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ABSTRACT

The well-known cubic Allen–Cahn (AC) equation is a simple gradient dynamics (or variational) model for a nonconserved order parameter
field. After revising main literature results for the occurrence of different types of moving fronts, we employ path continuation to deter-
mine their bifurcation diagram in dependence of the external field strength or chemical potential. We then employ the same methodology
to systematically analyze fronts for more involved AC-type models. In particular, we consider a cubic–quintic variational AC model and
two different nonvariational generalizations. We determine and compare the bifurcation diagrams of front solutions in the four considered
models.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003271

The problem of front propagation has a very long history with
essential contributions coming from different fields. One of
the simplest variational model possessing front solutions is a
so-called cubic Allen–Cahn (AC) equation for a nonconserved
order parameter field. In this paper, we systematically analyze
possible phase transitions in the AC equation employing analyt-
ical results given in the literature and compare them to results
obtained with numerical path continuation techniques. Further-
more, we apply the same methodology to fronts occurring in
more involved AC-type models, including a cubic–quintic vari-
ational AC model and two different nonvariational generaliza-
tions, where the AC equation is emended by a nonequilibrium
chemical potential or is coupled to a polarization field.

I. INTRODUCTION

Many spatially extended systems can exist in different spatially
homogeneous states that depend on various ambient parameters.
In the absence of out-of-equilibrium driving forces, energy argu-
ments hold, and the homogeneous states may be (globally) stable,
metastable (nonlinearly unstable), or linearly unstable. In other
words, they represent global minima, local minima, and maxima (or
saddles), respectively, of an underlying energy functional. In general,

states of higher energy can be replaced through a moving front by
states of lower energy. A simple well studied deterministic contin-
uum model for such processes is the Allen–Cahn (AC) equation that
reads in a nondimensional form in one spatial dimension [Ref. 1,
their Eq. (11) with their Eqs. (3) and (4)] as

∂φ

∂t
= −

δF

δφ
with F =

∫ [

1

2
|∂xφ|2 + f(φ) − µφ

]

dx. (1)

It corresponds to a nonconserved gradient dynamics on an under-
lying energy functional F[φ] that contains a square gradient term
and a local energy f(φ). The equation arises in many different con-
texts and is, sometimes for specific, often quartic choices of f(φ),
known as the Fisher–Kolmogorov,2 Fife–Greenlee,3 Schlögl,4 or Zel-
dovich–Frank–Kamenetsky equation.5 It is studied as a model that
describes dynamics in multistable systems close to phase transitions
of a nonconserved order parameter field φ(x, t). By “nonconserved,”
we refer to a dynamics like Eq. (1) that does not conserve the total
“mass”

∫

φ(x, t)dx in the system. In its most common form, the AC
equation features a double-well potential, i.e., a quartic f(φ). It may
be symmetric with minima of equal energy at φ− and φ+ = −φ− or
be tilted by a chemical potential or external field µ. Note that some-
times Eq. (1) with this specific f(φ) is referred to as the Allen–Cahn
equation.6
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For example, the behavior of the magnetization density in a fer-
romagnet can be described by a coarse-grained free energy density
that is identical to such an energy functional. Moreover, the time
evolution of this density can indeed be modeled by the AC equation.7

Although the global minimum for a symmetric double-well poten-
tial corresponds to homogeneous steady states of either φ− or φ+,
steady states consisting of arrangements of patches of φ− and φ+ do
also exist. Here, we call the interfaces between the patches “fronts.”
In the literature, the notions “kink” and “anti-kink” are also used.
In a fully symmetric situation, the fronts are at rest. Otherwise, they
move, e.g., driven by µ 6= 0. For small driving, one can analytically
determine the velocity of these fronts that connect two linearly stable
states corresponding to local minima of f(φ), see, e.g., Refs. 8 and 9.

Via another type of moving front, a linearly stable state invades
a linearly unstable state.10 Such fronts occur when systems are sud-
denly quenched into an initially homogeneous unstable state. Small
local perturbations then grow and develop into patches of sta-
ble states that spread out over the whole domain. In general, the
stable state may correspond to a pattern. This case can, for exam-
ple, be found in the Taylor–Couette flow.11 Fronts also appear in
Rayleigh–Bénard systems when the heat flux is suddenly increased.
Then, a convective vortex front propagates into the unstable con-
ductive state.12 Moreover, front propagation into unstable states is
studied in crystal growth13 and in the context of chemical reactions.14

Note that the motion of fronts between homogeneous and spa-
tially periodic states may be induced adding noise terms.15 Another
distinction is between pulled and pushed fronts, where the velocity
of the former is controlled by linear effects, while in the latter case,
nonlinear effects dominate.8,9

Here, we investigate the dependence of the motion of fronts
on the strength of the external field or chemical potential µ 6= 0.
On the one hand, we consider the well-known case of a simple
AC system with a double-well potential8 and use it to introduce
our methodology that is based on numerical continuation.16 On
the other hand, we consider AC models with more complicated
local energy17,18 that allows for a larger number of front types and
an active AC model that cannot be written as a gradient dynam-
ics, i.e., in the variational form (1). We employ two ways to ren-
der the AC model nonvariationally. First, we add a nonvariational
term analogously to Ref. 19, i.e., we incorporate a nonequilibrium
chemical potential16 as also frequently done for mass-conserving
Cahn–Hilliard-type dynamics.20–23 Such an amended AC equation
may be employed to model, e.g., front propagation in a liquid crys-
tal light valve.19 Second, we couple the AC equation for the order
parameter to an evolution equation of a polarization field P in a
similar spirit as in an active phase-field-crystal (PFC) model.24–26

For other models including an active Swift–Hohenberg equation,
see Ref. 27; a tentative systematics in the case of single scalar fields
is given in the introduction of Ref. 16. Taking the second option
for an active AC model in one spatial dimension results in a sys-
tem that is similar to the FitzHugh–Nagumo model,28,29 describing
spike generation in squid axons. There, the evolution equation of
the membrane potential corresponds to an AC equation with cubic
nonlinearity. As the AC model with double-well local energy is
arguably the simplest nonlinear gradient dynamics model for a par-
ity symmetric spatially extended system with φ → −φ symmetry,
its active generalizations are likely the simplest such active models.

Their detailed understanding will help us to extend our knowledge
of the collective behavior of active systems consisting of a large
number of active particles that are able to transform different types
of energy into motion. Here, we focus on front motion; however,
the range of phenomena in such systems is much richer. In gen-
eral, the microscale constituents interact in such a way that on a
macroscopic (collective) level directed collective motion and clus-
tering phenomena may occur.30 Different forms of interaction result
in different phenomena, e.g., a purely repulsive interaction may give
rise to motility-induced phase separation,21 whereas a combination
of repulsive and attractive interaction allows for the formation of
swarms, e.g., of fish or birds,31 bacteria colonies,32 or cell motion.33,34

The occurring collective structures may consist of disordered or
well ordered arrangements that are referred to as active clusters and
active crystals,35 respectively. Our work is structured as follows: First,
in Sec. II, we focus on the passive systems, i.e., AC systems that
evolve toward equilibrium. In particular, Sec. II B introduces the
cubic AC equation, briefly reviews linear and nonlinear marginal
stability analyses and determines different front types and their
velocities as a function of driving strength µ. In Sec. II C, we con-
sider the cubic-quintic AC equation that has already attracted much
interest, e.g., in Refs. 17, 18, and 36–38. In contrast to the litera-
ture, we focus on the transitions occurring in the behavior of fronts
when the driving strength µ is changed. Second, Sec. III considers
the two nonvariational amendments of the AC equation. Thereby,
Sec. III A considers the first option, namely, the case of a nonequi-
librium chemical potential. We discuss the analytical expression for
the shift in front velocity close to the transition from the variational
to the nonvariational case and compare this to our fully nonlinear
numerical results. Section III B considers the second option, namely,
the coupling of a cubic AC equation with the dynamics of a polar-
ization field. It is shown that a condition for onset of motion can be
determined analytically, similar to the case of the active PFC model
in Ref. 25. Bifurcation diagrams are presented for both cases of active
AC equations that summarize the behavior of all occurring front
solutions when the driving strength is varied. Finally, in Sec. IV, we
conclude and give an outlook to future works.

II. PASSIVE SYSTEMS

A. General form of Allen–Cahn-type models

We start our analysis with the well-known standard passive
version of the AC equation that describes the time evolution of an
one-dimensional nonconserved order parameter field φ = φ(x̃, t).
The general form is obtained by introducing the energy F in Eq. (1)
into the general gradient dynamics. It reads

∂φ

∂t
=

∂2φ

∂ x̃2
− f′(φ) + µ, (2)

where µ is the chemical potential, f′(φ) is the first derivative of the
purely nonlinear local energy density f with respect to φ, and x̃ is the
coordinate in the laboratory frame. In order to find the velocity v
of steadily traveling fronts propagating between two homogeneous
steady states φs given by −f′(φs) + µ = 0, we transform system (2)
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into a co-moving frame x = x̃ − vt and get

− v
dφ

dx
=

d2
φ

dx2
− f′(φ) + µ . (3)

Multiplying Eq. (3) by
dφ

dx
and integrating (employing Neumann

boundary conditions) yields the explicit expression for the velocity

v =
f
(

φs1
)

− f
(

φs2
)

+ µ
(

φs2 − φs1
)

∫ ∞
−∞

(

dφ

dx

)2

dx

, (4)

for a front propagating from φs2 at x → −∞ into φs1 at x → ∞.
In the following, we consider two specific passive systems in

Secs. II B and II C below, namely, AC equations with cubic and
cubic–quintic nonlinearities, respectively. By employing µ as a main
control parameter, we focus on the influence of a physically most rel-
evant quantity that can be easily controlled externally. Note that this
differs from most employed and well-known parametrizations.38–42

B. The passive cubic Allen–Cahn equation

1. Model

In the case of the cubic Allen–Cahn equation, f(φ) = − 1
2 φ

2 +
1
4 φ

4 and hence, in the co-moving frame, we obtain

− v
dφ

dx
=

d2
φ

dx2
+ φ − φ3 + µ. (5)

As mentioned above, this equation is extensively studied in the lit-
erature. Here, we review some main approaches to introduce the
methodology for our analysis of the more involved models, cf. e.g.,
Refs. 8 and 9. For the cubic nonlinearity, three homogeneous steady
state solutions φ0(µ), φ+(µ), and φ−(µ) exist for −µc < µ < µc

with µc = 2
3
√

3
≈ 0.385. Here, φ+ and φ− are linearly stable states,

while φ0 is unstable. Equation (5) can be seen as a mechanical sys-
tem, where φ corresponds to the position and x is time. In this
framework, Eq. (5) describes a particle moving in a double-well
potential V(φ) = −f(φ) + µφ with friction v. As for µ = 0 the max-
ima of V(φ) are of equal height, we find that for any friction v > 0,
the particle will always asymptotically approach “position” φ0 = 0,
which corresponds to the unstable homogeneous state. However, in
reality, one observes that such fronts, moving into the unstable state
φ0, have a certain specific velocity,41 namely, v = 2. Hence, a dynam-
ical selection of the front speed occurs (for details, see, e.g., Ref. 43),
which we briefly discuss next.

2. Linear marginal stability analysis

The selection problem is tackled employing a linear marginal
stability analysis: We consider the linearization of the fully time-
dependent AC equation about the unstable homogeneous state φ0,
i.e., we consider the leading edge of the front (cf. Ref. 43). Note
that at the marginal stability point, i.e., the point where the result-
ing eigenvalues are zero, the group velocity of perturbations at the

leading edge of the front

vg =
dωr(k)

dkr
(6)

equals the velocity of the front

vf =
ωr(k)

kr
. (7)

Here, k and ω are the wavenumber and frequency, respectively, and
the superscript r denotes the real part. In this way, one obtains a
linear marginal velocity

vl := vf = vg = ±2
√

−f′′(φ0). (8)

Thus, at the linear marginal stability, point perturbations can not
grow above the moving front profile and any front with v < vl

is unstable. Hence, Eq. (8) provides a criterion to determine the
dynamically selected front velocity. In Ref. 43, it is shown that the
linear marginal velocity is an attractive fixed point such that any
front moving with v > vl eventually converges to one with v = vl.
This is referred to as a pulled front. Note that Ref. 44 investigates
marginally stable fronts and transitions between different front types
for several passive AC-type nonlinear diffusion equations as part of
a study of heteroclinic orbits in various two-dimensional dynami-
cal systems. Namely, they analyze the eigendirections in phase space
of the homogeneous fixed points that correspond to front solutions
and show that indeed the perpendicular direction, i.e., the direction
corresponding to the marginal velocity is approached.

3. Numerical path continuation

Next, we determine fronts numerically and compare them to
the analytical results. In particular, we employ path continuation
techniques45,46 bundled in the MATLAB toolbox pde2path16,47 or
in the continuation package auto07p48,49 to determine front pro-
files and velocities in dependence of the parameter µ that acts as
the strength of a driving caused by an external field or chemical
potential.50

The resulting bifurcation diagram is shown in terms of the
front velocity in Fig. 1(a). Interestingly, three branches exist cor-
responding to three different front types that are illustrated by the
examples in panels (b)–(d). The overall symmetry of the bifurca-
tion diagram reflects the symmetries (x, v) → (−x, −v) and (φ, µ)

→ (−φ, −µ) of Eq. (5). The three front types are a front between
the two linearly stable homogeneous states φ− and φ+ indicated
by the red dashed lines, and the two respective fronts correspond-
ing to the two different linearly stable states invading the unstable
state indicated by green dotted and blue solid lines. The velocity
v of the front between stable states is determined as explained in
Sec. II A. For the front that moves to the right at positive µ [red
dashed line in the upper right quadrant of Fig. 1(a)], v first increases
linearly than faster with increasing µ. The curve becomes vertical
when µ reaches the critical value µc, where the lower maximum of
the mechanical potential (φ−) and the minimum (φ0) annihilate [see
Fig. 1(e)]. This implies that the bifurcation curve passes a saddle-
node bifurcation and folds back. Then, it continues toward lower µ

as the solid blue line representing fronts where the globally stable
state (linearly stable and of lowest energy) invades the unstable state
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FIG. 1. The central panel (a) presents the bifurcation diagram of front states
described by the cubic AC Eq. (5) in terms of the front velocity v as a function of
the driving strengthµ. The red dashed lines correspond to fronts between the two
linearly stable homogeneous states φ− and φ+ with an example given in panel
(b). The two respective fronts corresponding to the two different linearly stable
states invading the unstable states are indicated by green dotted and blue solid
lines with examples in panels (c) and (d), respectively. Panel (e) gives the equiv-
alent mechanical potential V(φ) at the critical value µ = µc, where φ− and φ0

annihilate.

φ0. To understand its origin, in Sec. II B 4, we introduce the nonlin-
ear marginal analysis. Decreasing µ further, when crossing µ = 0,
the fronts where the globally stable state φ+ invades the unstable
state φ0 become fronts where the metastable state φ− (linearly sta-
ble, but of higher energy than the globally stable state) invades φ0

(green dotted lines).
Note, finally, that at the value of µ where the red dashed and

green dotted line cross, fronts from φ0 to φ− and from φ− to φ+

have the same velocity.
This implies that in the vicinity of this point one may expect

moving structures consisting of two fronts as depicted exemplarily
in Fig. 2(a). To the left of this point, the φ− to φ+ front stays behind
the φ0 to φ− front [cf. Fig. 3(a)], while to the right of this point the
former catches up with the latter. Then, they merge as indicated in
Fig. 3(b) and create the faster φ0 to φ+ front shown in Fig. 2(b).

FIG. 2. Snapshots from a time simulation of Eq. (5) at µ = 0.377 for a front
initially composed of a front between the two stable states φ+ and φ− moving at
vs and the linear marginal front between φ− and φ0 moving at vl < vs (a). At a
later time, the two fronts merge into a single nonlinear marginal front between φ+

and φ0 moving at vnl > vs (b).

FIG. 3. The motion of the fronts illustrated in Fig. 2 is illustrated in space–time
plots of the front position (a) at µ = 0.350, where vl > vs, i.e., the fronts do not
merge and (b) atµ = 0.375, where vl < vs, i.e., the fronts eventually merge and
move with vnl .

4. Nonlinear marginal stability analysis

Using the mechanical analogy, we can also understand the
second occurring front moving into the unstable state: a particle
moving in this potential may start at either of the maxima corre-
sponding to φ+ or φ−. In Refs. 36 and 43, it is shown that solving the
fully nonlinear equation above a threshold µ one additionally finds
a so-called invasion front, where φ+ invades φ0, that is marginally
stable and has a nonlinear velocity vnl > vl.

Therefore, we study (5) to find the front solution correspond-
ing to the blue solid line in Fig. 1(a) following the ideas given in
Refs. 8, 36, 39 and 43. We denote the two possible linearly stable
states by φ±. Because the front is monotonic, we can define

h(φ) =
dφ

dx
(9)

as a function of φ. As the front connects two homogeneous states,
we request

h
(

φ0
)

= h
(

φ±)

= 0. (10)

Deriving (9) with respect to x yields

dφ

dx

dh

dφ
= h(φ)

dh

dφ
=

d2
φ

dx2
. (11)

Thus, inserting (9) and (11) into (5) we get

− vh(φ) = h(φ)
dh

dφ
+ φ − φ3 + µ. (12)

Finally, with a power series ansatz up to second order for h(φ), we
obtain

vnl(µ) =
3

√
2

(

φ0 + φ±)

, (13)

for the nonlinear marginal velocity. Note that considering an ansatz
of higher order, the comparison of coefficients always results in a
second order polynomial. Therefore, the obtained expression is an
exact solution to the cubic AC equation.

Figure 4(a) shows the linear marginal wave number kr
l (solid

green line, obtained in Sec. II B 2) and the here obtained non-
linear marginal wave numbers kr

nl+ and kr
nl− (dashed blue and red

line, respectively) as a function of µ, whereas Fig. 4(b) gives the
corresponding velocities vl, vnl+, and vnl−. Subscripts “+” and “−”
refer to fronts where states φ+ and φ− invade state φ0, respectively.
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FIG. 4. Shown are the (a) real part of wave numbers Re(k) = kr and (b) veloc-
ities v of linear (subscript “l”) and nonlinear (subscript “nl”) marginal fronts as a
function of driving strength µ. The nonlinear marginal results are given for fronts,
where state φ+ invades state φ0 (subscript “+”) as well as for fronts where state
φ− invades state φ0 (subscript “−”). The implication of the dependencies for the
selection of front velocities is discussed in the main text.

The dynamical selection always implies that the steeper (larger wave
number) and slower front is chosen. Considering the front connect-
ing φ− and φ0, we see that kr

l > kr
nl− for all µ, i.e., at all µ where

the front exists, the linear marginal velocity is selected [solid line in
Fig. 4(b), corresponding to the numerically obtained green dotted
line in Fig. 1]. In contrast, for the front connecting φ+ and φ0, the
condition kr

l > kr
nl+ only holds for µ < 0.2078, while at larger µ one

has kr
nl+ > kr

l . This implies that for µ < 0.2078, we find the linear
marginal velocity [solid line in Fig. 4(b)], while for µ > 0.2078, the
nonlinear marginal velocity [dashed blue line in Fig. 4(b)] is selected.
This perfectly agrees with the numerical results in Fig. 1 (solid blue
line).

In summary, for µ < 0.2078, the two fronts are degenerated
as both move with the linear marginal velocity, while at larger µ,
two distinct velocities are found, i.e., above µ = 0.2078, the dot-
ted green and the solid blue branch in Fig. 1(a) differ, while they
exactly coincide below this value. Note that the v(µ) curves in Fig. 4
are tangential to each other where the two corresponding kr(µ)

curves cross. This implies that a clear transition in the correspond-
ing numerically obtained curve can be best seen when inspecting the
second derivative of v with respect to µ.

Note that all described front types are analytically studied in
Ref. 8. We have seen that the numerical results obtained by path
continuation well agree with the analytical results. The given brief
review and comparison provides the starting point for our analysis
of more complex models.

C. The passive cubic–quintic Allen–Cahn equation

Next, we analyze the cubic–quintic AC equation, i.e., Eq. (1)
with f(φ) = 1

6 φ
6 − a

4 φ
4 + b

2 φ
2 similar to the one studied in Ref. 18

in the context of the creation of metastable phases in crystallization
processes. It is also studied in Ref. 51 with the additional influence of
stochastic noise. The equation for steadily moving fronts (3) is then

− v
dφ

dx
=

d2
φ

dx2
− φ5 + aφ3 − bφ + µ. (14)

It has stable homogeneous solutions φ−
s , φ0

s , φ+
s and unstable homo-

geneous solutions φ−
u and φ+

u , all depending on µ. As in Ref. 18, we
use a = 5/4 and b = 1/4. The corresponding bifurcation diagram is
depicted in Fig. 5(a) together with exemplary front profiles in pan-
els (b)–(f). Panels (g) and (h) show the potential in the mechanical
analogy at the critical values µc1 ≈ 0.044 and µc2 ≈ 0.114, where
two homogeneous steady states annihilate. To understand the rich
picture involving a number of different branches of front solutions,
we first identify the two linear marginal velocities corresponding to
fronts invading the two unstable states. We also characterize all non-
linear marginal velocities. Note that the overall symmetries of the
bifurcation diagram correspond to the ones known from Fig. 1.

Because the nonlinear function in (14) is a quintic polynomial,
the roots as a function of µ cannot be calculated analytically. Never-
theless, we can find them numerically, e.g., employing continuation.
In consequence, we were able to study the linear marginal velocity
by inserting the numerical results into the specific form of Eq. (8),
i.e., into

vl+ = ±2
√

−5φ+
u

4 + 3aφ+
u

2 − b, (15)

vl− = ±2
√

−5φ−
u

4 + 3aφ−
u

2 − b, (16)

where vl+ and vl− are the linear marginal velocities for a front invad-
ing the unstable states φ+

u and φ−
u , respectively. They are depicted

in Fig. 6 as black dotted-dashed and dashed lines, respectively. The
numerical results are indicated by the gray solid lines and, in par-
ticular, for the linear marginal velocities coincide well with the
semi-analytical result.

In this way, we identify the gray dotted-dashed branches and
the green solid branches for |µ| > µc1 in Fig. 5(a) as linear marginal,
i.e., pulled fronts. We note that different parts of the structure of
the bifurcation diagram for the simple cubic AC equation presented
above in Fig. 1(a) can be recognized as substructures within the
bifurcation diagram for the quintic case in Fig. 5(a). For instance,
the red solid branches corresponding to fronts between the two sta-
ble states φ+

s and φ−
s in Fig. 5(a) behave similarly to the red dashed

branches in Fig. 1(a) over the entire µ-range. The blue dashed and
green solid branches in Fig. 5(a) are similar to blue solid and green
dotted branches in Fig. 5(a), however, only for |µ| > µc1.

Therefore, we expect the blue dashed branch in Fig. 5(a) to cor-
respond to a nonlinear marginal front, as they can be identified as
invasion fronts at the bifurcation point, where it merges with the red
branch. Moreover, in the interval −µc1 < µ < µc1, we twice observe
a structure similar to the one of the cubic AC equation, once for neg-
ative and once for positive velocities. Again, this can be explained
referring to the mechanical analogy: In this µ-range, we can con-
sider the potential as being composed of two cubic AC potentials. At
the critical values |µ| = µc1, the metastable state merges with one of
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FIG. 5. The central panel (a) presents the bifurcation diagram of front states described by the cubic–quintic AC Eq. (14) in terms of the front velocity v as a function of
the driving strength µ. The red solid lines correspond to fronts between the two linearly stable states φ+

s
and φ−

s
with an example given in panel (f) for µ = 0.09. At the

saddle-node bifurcation atµ = µc2 the states φ−
s
and φ−

u
annihilate. The green solid lines corresponds to fronts between φ−

s
and φ−

u
[panel (c) forµ = −0.02] or between

φ+
s
and φ+

u
depending on the sign of µ. At the saddle-node bifurcation at µ = µc1 the states φ0

s
and φ+

u
annihilate (at µ = −µc1 the states φ0

s
and φ−

u
). The orange

dotted lines refer to front solutions between φ+
s
and φ0

s
or between φ−

s
and φ0

s
[panel (d) for µ = −0.02], again depending on the sign of µ. The blue dashed lines refer

to front solutions between φ+
s
and φ−

u
[panel (e) for µ = 0.09]. Finally, the gray dotted-dashed lines represent front solutions between φ0

s
and φ+

u
or between φ0

s
and φ−

u

[panel (b) for µ = −0.02]. The thin horizontal black dotted lines in front profile panels represent the homogeneous steady states, i.e., the real roots of f ′(φ) − µ in (14).
Panels (g) and (h) gives the equivalent mechanical potential −f(φ) + µφ at the critical values µc1 and µc2, respectively.

the unstable states and, thus, for |µ| > µc1, there is only one “cubic”
AC potential left.

We now return to the blue dashed front in Fig. 5(a), for a
profile see Fig. 5(e). To understand why the front does not exist
for |µ| < µc1, we study again the mechanical analogy at µ = µc1

illustrated in Fig. 5(h): consider a particle starting at φ+
s and just

FIG. 6. The linear marginal velocity vl− found in Eq. (14) corresponds to the black
dashed line, whereas vl+ corresponds to the black dotted-dashed line. The results
gained with auto-07p are illustrated as the gray solid lines.

reaching φ−
u without overshooting. Let the corresponding friction

be v1. Considering now a particle that moves from φ+
s to φ0

s , the cor-
responding friction v2 needs to satisfy v2 > v1. Moreover, a particle
starting in φ−

u requires more negative friction to move up to φ+
s than

it does to move up to φ0
s . Hence, we claim v1 > v3, where v3 is the

friction to move from φ0
s to φ−

u . That is, we require v3 < v1 < v2,
where v3 corresponds to the velocity v3 ≈ 1.33 of a front on the
gray dotted-dashed branch at µc1. However, v2 is the velocity at
the bifurcation point, where the orange dotted branch becomes the
green solid branch with v2 ≈ 0.73 < v3. Hence, v1, the velocity of
the blue dashed solution does not satisfy the condition at µ = µc1

and, therefore, the branch cannot exist anymore. Note that this argu-
ment is similar to the one given in Ref. 18, and we can identify the
blue dashed front solutions as being similar to those found there,
however, as our equations slightly differs they are not identical. The
question how exactly this branch ends is not easy to answer. Our
calculations show that following the branch toward smaller µ, the
slight shoulder visible in Fig. 5(e) develops into a long inclined
plateau of increasing length. This indicates that even at µ > µc1,
the front already “feels” the presence of the two additional homo-
geneous steady states that exist for µ ≤ µc1. With other words, the
spatial dynamics slows down close to these “ghost solutions” form-
ing the sloped plateau. The slope gets smaller the longer the plateau
becomes, i.e., the closer one approaches µc1 from above. We are
not able to follow the blue dashed branch further than shown in
Fig. 5(a) as the plateau becomes too long for the largest of our
numerical domain sizes. Our hypothesis is that the curve becomes
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FIG. 7. Comparison of bifurcation diagrams for the variational cubic AC equation
with b = 1 (gray solid) and the nonvariational cubic AC equation (17) with b = 2
(black dashed). The shift in velocity v1 for a front propagating from φ+ into φ− at
µ = 0 for ε = 0.2 is consistent with the analytical result.

vertical when approaching µc1 from above where the structured
front between φ+

s and φ−
u decays into several fronts between φ+

s , φ+
u ,

φ0
s , and φ−

u that exist for µ ≤ µc1.

III. ACTIVE SYSTEMS

So far, we have examined front motion described by varia-
tional AC equations, i.e., systems that can be written as noncon-
served gradient dynamics. They describe systems that ultimately
approach thermodynamic equilibrium. Next, we consider active sys-
tems where this is not the case. In particular, we consider two
different examples of nonvariational extensions of the cubic AC
equation.

A. Nonvariational cubic Allen–Cahn equation

In the first considered example of a nonvariational AC
equation, a term gnv is added to (2) that breaks its gradient dynamics
form. The resulting equation is19

∂φ

∂t
=

∂2φ

∂ x̃2
+ φ − φ3 + µ + εgnv

(

φ,
∂φ

∂ x̃
,
∂2φ

∂ x̃2

)

with gnv

(

φ,
∂φ

∂ x̃
,
∂2φ

∂ x̃2

)

=
(

∂φ

∂ x̃

)2

+ 2bφ
∂2φ

∂ x̃2
. (17)

Note that the complete equation becomes variational for b = 1.
Again, we are interested in the velocities of fronts and their

dependence on the external driving strength µ. Following Ref. 19,
we use a front solutions of the variational Eq. (5) [i.e., Eq. (17)
with ε = 0] as a reference solution φF and employ the ansatz φ(x̃, t)
= φF(x̃ − vt) + u(x̃ − vt, εt). Here, v ≈ v0 − εv1 with v0 being the
velocity of the reference front, i.e., φF(x̃ − v0t) := φF(x).

One multiplies Eq. (17) by ∂φ/∂x, integrates in x, employ-
ing the point symmetry φF(x) = −φF(−x), and expands in ε (see
the Appendix for details). Then, for linear order, one can write the

FIG. 8. Bifurcation diagram for resting and moving fronts for the active cubic AC
Eq. (19) at µ = 0. Panels (a) and (b) show the norm ||φ||2 and the front velocity
v in dependence of activity α0, respectively. The resting and moving fronts are
given as black dashed and red solid lines, respectively. The insets focus on the
region where the drift pitchfork bifurcation occurs. The black solid line represents
the homogeneous solution branch.

nonvariational contribution as19

v1 =

∫ ∞
−∞ gnv

(

φF, ∂φF
∂x

, ∂2φF
∂x2

)

∂xφF dx
∫ ∞

−∞ (∂xφF)
2 dx

. (18)

We notice that v1 in contrast to v0 not only depends on the difference
in energy densities f but also on the nonvariational part gnv and the
shape of the reference front φF(µ). Figure 7 gives the correspond-
ing numerically obtained bifurcation diagram of front solutions to
Eq. (17) for a nonvariational case with b = 2 and relatively small ε =
0.2 (black dashed line) in comparison to the variational case with
b = 1 (gray solid line). Because gnv breaks the φ → −φ symmetry,
the µ → −µ symmetry is broken.

Inserting φF into (18) and solving the integrals for µ = 0, where

v0 = 0 yields v1 = 2
√

2
5 , i.e., in the nonvariational case, the front

moves even without external driving. The shift in velocity for the
chosen ε coincides on the scale of Fig. 7 with the numerical result.
At larger strength ε of the nonvariational term, linear considera-
tions do not suffice anymore (not shown). Note that the point of
zero velocity for the fronts connecting φ− and φ+ is with increasing
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FIG. 9. (a) Bifurcation diagram of front states described by the active Allen–Cahn model (19). Shown is the front velocity as a function of the external driving strength µ at
fixed activity α0 = 1.9951. There are various fronts between the two stable states φ− and φ+, namely, the red solid, black dot-dashed, gray solid, and orange dashed lines.
The blue and green dashed lines correspond to fronts propagating into the unstable state φ0. The gray solid line corresponds to a branch of time-periodic oscillating fronts.
Panels (b)–(g) show selected front profiles φ(x) in colors equal to the corresponding branch in panel (a) at µ ≈ 0.2. The accompanying polarization profiles P(x) are given
in gray. For completeness, we also indicate the steady homogeneous states φ−, φ0, and φ+ as dotted horizontal lines. Note, however, that the solution panels are differently
scaled on the φ, P axes as the polarization profiles differ in magnitudes.

ε shifted toward positive µ. It may be seen as the out-of-equilibrium
coexistence point of the two states connected by the front.

B. Cubic Allen–Cahn equation coupled to polarization

field

As the second and final example of the nonvariational AC
equation, we consider a cubic AC equation coupled in a simple way
to the linear dynamics of a polarization field. Here, we focus on the
one-dimensional case, where P describes the local strength of direc-
tional order and employ the same coupling between order parameter
field φ and P as employed in the active phase-field-crystal (PFC)
model.24,25,52,53 The system of equations then reads

∂φ

∂t
= −

δF

δφ
− α0

∂P

∂x
,

∂P

∂t
= DT

∂2

∂x2

δF

δP
− Dr

δF

δP
− α0

∂φ

∂x
,

with F[φ, P] = FAC[φ] + FP[P],

(19)

where

FAC =
∫

dx

[

1

2

(

∂

∂x
φ

)2

−
1

2
φ2 +

1

4
φ4 − µφ

]

(20)

is the energy for the cubic passive AC equation as used before,

FP =
∫

dx
1

2
P2, (21)

is the energy of the polarization P that favors a state of random
orientation (P = 0) and does not allow for spontaneous polariza-
tion. Both coupling terms have a strength α0 (called “activity”)
and their form represents the simplest possible form to couple the
scalar φ and the “vector” P. Furthermore, DT, and Dr are positive
translational and rotational diffusivities, respectively. Note that the
coupling terms break the gradient dynamics structure.

In analogy to the active PFC model, we expect that steady states
of the passive model (α0 = 0) remain at rest until they undergo a
drift pitchfork bifurcation at a critical activity where they start to
move. We determine an analytical criterion for the onset of motion
in analogy to the derivation for the active PFC model in Ref. 25. It
reads

0 = ‖∂xφs‖2 − ‖∂xPs‖2 (22)

and allows us to determine the critical values of the activity parame-
ter α0. Here, φs and Ps denote steady state profiles whose L2-norm is
taken. Note that the specific criterion differs from the one in Ref. 25
as there the order parameter field φ follows a conserved dynamics
while here the dynamics is nonconserved. This is further discussed
in Ref. 54.

Figure 8 presents results of continuation runs following front
solutions of Eq. (19) at µ = 0 using the activity α0 as a control
parameter. The black dashed line corresponds to resting fronts con-
necting φ− and φ+. These resting fronts become shallower with
increasing α0, and the branch terminates on the branch of trivial
homogeneous states at about α0 = 36.3. However, already at rather
small α0 ≈ 0.19, a drift pitchfork bifurcation occurs [see the inset of
Fig. 8(a)], where a branch of steadily moving fronts (red solid line)
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FIG. 10. Space–time plots for a periodically modulated front solution of Eq. (19).
Shown are (top) the concentration profile and (bottom) the polarization profile at
µ = 0.2 in the frame moving with their mean velocity v = 0.15. The different
colors of the contour indicate time scaled by the period T ≈ 14.5. Furthermore,
a projection of the profiles is shown on the x–t plane as gray-scale contour plot.

emerges from the branch of resting fronts. The numerical results
confirm criterion (22). In the limit of large activity, we find v = α0,
as depicted in Fig. 8(b). This agrees with analogous results in Ref. 25
where an analytical argument is also given.

Next, we take a moving front at a particular value of activity
(α0 = 1.9951) from Fig. 8 and perform a continuation in µ to obtain
a bifurcation diagram in analogy to Fig. 1 for the passive cubic AC
equation. The result is presented in Fig. 9(a). Panels (b)–(g) show
selected front profiles φ(x) in colors equal to the corresponding
branch in panel (a). The accompanying polarization profiles P(x)
are given in gray. For completeness, we also indicate the steady
homogeneous states φ−, φ0, and φ+ as dotted horizontal lines. Note
that the front location is off center in the computational domain
as the spatial relaxation toward the homogenous states can be very
asymmetric.

The fronts on the red solid and black dot-dashed branches at
µ = 0 correspond to the moving and resting front in Fig. 8. Increas-
ing µ, the symmetry of the potential in φ is broken and two red
branches emerge. Both of them undergo saddle-node bifurcations
at respective critical values µ = 0.26 and µ = 0.38. The larger one
is identical to µc in Sec. II B as the homogeneous steady states do
not depend on activity (in contrast to their stability). The smaller
one can not be obtained from an analysis of the local equilibrium
potential f(φ) − µ.

Another interesting feature are fronts that do not move steadily
but are modulated in a time-periodic manner. They are found on the
gray solid branches in Fig. 9(a) and emerge with finite oscillation
period of about T = 12.5 from a Hopf bifurcation where the orange
dashed and the black dot-dashed branch connect. The branch con-
tinues toward smaller µ with a monotonically increasing period (up
to about T = 14.5 at µ = 0). Typical changes in the moving solution
profiles over one period of time are depicted in Fig. 10.

Overall, one can state that the coupling of a simple AC dynam-
ics to a linear dynamics of a polarization field introduces a number
of additional unstable front solutions all connecting φ+ and φ−.
Hence, the structure of the bifurcation diagram strongly changes
from the passive case in Fig. 1(a) and the active case in Fig. 9(a). Note
that due to the coupling, the marginal stable fronts propagating into
the unstable state also become unstable in the active model.

IV. CONCLUSION

In the present work, we have investigated front solutions in a
number of passive and active Allen–Cahn (AC) equations employ-
ing continuation techniques. We have focused on the dependency
of front velocities on an external driving µ, e.g., a chemical poten-
tial or external field. The results have been presented in the form of
bifurcation diagrams. First, we have reviewed the widely available
analytical results for the simple cubic AC equation and have intro-
duced the concepts of pulled and pushed fronts employing linear
and nonlinear marginal stability analysis. We have highlighted that
there exist fronts that change their character from pulled to pushed
as the driving µ is increased across a threshold.

Next, we have extended the analysis to the cubic–quintic AC
equation that allows for more homogeneous steady states and, in
consequence, for more fronts connecting them. We have presented
a rather involved bifurcation diagram, employing again the driving
µ as control parameter. It shows the various front solutions con-
necting up to five homogeneous steady states. In general, our results
allow one to better understand how the different fronts are related
and how they transform with increasing driving strength. To under-
stand substructures of the diagram, it has been helpful to discuss
symmetries and how parts of the cubic–quintic potential resemble
the cubic potential.

The considered model is similar to the one studied in Ref. 18
in the context of the creation of metastable phases in crystallization
processes. In particular, they investigate how double-fronts emerge
that first create a metastable phase before it is transformed into the
stable phase. Their main control parameter is the order parame-
ter value corresponding to one of the thermodynamic phases, while
here we have kept the energy functional fixed and employed the
chemical potential (external field) as a control parameter. We have
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shown how fronts and transitions similar to the ones discussed in
Ref. 18 are embedded into the full bifurcation diagram of front
states. As Ref. 55 extends the discussion of Ref. 18 to systems where
two order parameter fields are coupled, in the future, it may also
be interesting to revisit such more complicated two- or multi-field
models employing continuation techniques.

After considering the cubic and cubic–quintic AC equations
that represent gradient dynamics models, we have considered non-
variational extensions. First, we have analyzed a cubic AC equation
with the addition of a standard nonvariational chemical potential
(see, e.g., classification in the introduction of Ref. 16). We have
found that main symmetries of the bifurcation diagram are broken,
however, occurring front types and overall topology of the dia-
gram remain the same as in the passive case. Our numerical results
agree at small strength of the nonvariational influence ε with the
approximate analytical results of Ref. 19 but show some deviations
at larger ε. In the future, it will be interesting to extend our present
investigation of the variational cubic–quintic AC equation toward
the nonvariational case either by adding nonvariational terms to
the cubic–quintic AC equation studied here or by considering the
equation recently introduced in Ref. 56 as a model for a liquid crystal
light valve experiment with optical feedback.

Changes with respect to the passive case are more dramatic in
the second nonvariational model that couples a cubic AC equation
with a linear equation of a polarization field, similar to such cou-
plings in more involved models of active matter. In this case, we
have encountered additional fronts between stable states that move
due to activity even at zero external driving. They emerge in a drift
pitchfork bifurcation similar to the onset of motion in active phase-
field-crystal25 and active Cahn–Hilliard models.54 This then implies
a much richer bifurcation diagram that even contains oscillating
front states that emerge at a Hopf bifurcation of steady fronts. We
believe future comparative studies that analyze the front motion and
its emergence in a larger class of systems would be highly valuable.

APPENDIX: NONVARIATIONAL CUBIC ALLEN–CAHN

EQUATION

As in the literature,19 the derivation of Eq. (18) is only sketched,
and we find it instructive to reproduce and, here, reproduce it in
greater detail. The aim is to determine an analytical expression for
the velocity of moving fronts that are solutions of nonvariational
AC Eq. (17) and to discuss its dependence on the strength of the
nonvariational influence.

We introduce the ansatz

φ(x̃, t) = φF(x̃ − vt) + u(x̃ − vt, εt),

v = v0 − εv1, (A1)

where φF is a solution to (5) with velocity v0, i.e., φF(x̃ − v0t)
:= φF(x) as the velocity changes due to the nonvariational term.
Moreover, we add a small adjustment function u also of order ε. For
the ansatz (A1), we introduce ξ = x̃ − vt = x + εv1t. Linearizing
φF(ξ) around x yields

φF(ξ) = φF(x) + εv1
∂φF

∂ξ

∣

∣

∣

∣

ξ=x

+ O(ε2). (A2)

Inserting the ansatz (A1) into (17) using (A2) and linearizing in ε

yields

− εv1v0
∂2φF

∂ξ 2

∣

∣

∣

∣

ξ=x

+ εv1
∂φF

∂ξ

∣

∣

∣

∣

ξ=x

− v0
∂u

∂ξ

= εv1
∂3φF

∂ξ 3

∣

∣

∣

∣

ξ=x

+ εv1
∂φF

∂ξ

∣

∣

∣

∣

ξ=x

− 3εv1φ
2
F

∂φF

∂ξ

∣

∣

∣

∣

ξ=x

+
∂2u

∂ξ 2
+ u − 3φF(x)

2u(ξ)2u + εgnv

(

φF(ξ),
∂φF

∂ξ
,
∂2φF

∂ξ 2

)
∣

∣

∣

∣

ξ=I

.

(A3)

By deriving (5) with respect to x

− v0
∂

∂x

∂φF(x)

∂x
=

∂

∂x

∂2φF(x)

∂x2
+

∂φF(x)

∂x
− 3φF(x)

2 ∂φF(x)

∂x
(A4)

and introducing the linear operator

L = −v0
∂

∂x
−

∂2

∂x2
− 1 + 3φF(x)

2, (A5)

we obtain

L†

(

∂

∂x
φF(−x)

)

= 0, (A6)

where L† is the adjoint of L. Next, we identify the linear operator
(A5) in (A3)

εv1
∂φF

∂ξ

∣

∣

∣

∣

ξ=x

+ εv1L

(

∂

∂x
φF

)

+ Lu = εgnv

∣

∣

∣

∣

ξ=x

. (A7)

With (A6), (A7) simplifies to

Lu = εgnv

(

φF,
∂φF

∂x
,
∂2φF

∂x2

)

− εv1
∂φF

∂x
. (A8)

According to the Fredholm alternative,57 (A8) is only solvable if
〈

εgnv

(

φF,
∂φF

∂x
,
∂2φF

∂x2

)

− εv1
∂φF

∂x

∣

∣

∣

∣

∂

∂x
φF

〉

=0 (A9)

because (A6) has a nontrivial solution.
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