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Symmetry-breaking, motion and bistability of
active drops through polarization-
surface coupling

Fenna Stegemerten, *a Karin John b and Uwe Thiele *c

Cell crawling crucially depends on the collective dynamics of the acto-myosin cytoskeleton. However, it

remains an open question to what extent cell polarization and persistent motion depend on continuous

regulatory mechanisms and autonomous physical mechanisms. Experiments on cell fragments and

theoretical considerations for active polar liquids have highlighted that physical mechanisms induce

motility through splay and bend configurations in a nematic director field. Here, we employ a simple

model, derived from basic thermodynamic principles, for active polar free-surface droplets to identify a

different mechanism of motility. Namely, active stresses drive drop motion through spatial variations of

polarization strength. This robustly induces parity-symmetry breaking and motility even for liquid ridges

(2D drops) and adds to splay- and bend-driven pumping in 3D geometries. Intriguingly, then, stable

polar moving and axisymmetric resting states may coexist, reminiscent of the interconversion of moving

and resting keratocytes by external stimuli. The identified additional motility mode originates from a

competition between the elastic bulk energy and the polarity control exerted by the drop surface. As it

already breaks parity-symmetry for passive drops, the resulting back-forth asymmetry enables active

stresses to effectively pump liquid and drop motion ensues.

1 Introduction

Active media far from thermodynamic equilibrium display rich
dynamic phenomena generated by active stress and self-
propulsion.1,2 From a reductionist’s perspective, bacterial colo-
nies, aggregates of epithelial cells or the cytoplasm of eukar-
yotic cells3–7 form a special class, where a thin free-surface layer
of active matter is in contact with a solid substrate. There,
active forces in the bulk related to nematic or polar order
compete with interfacial forces acting at the free surface and
the solid substrate. These autonomous physical mechanisms
provide the backdrop for biological regulation pathways, and
their interplay gives rise to experimental phenomena, such as
active spreading and motility.8–10

Given, the complex nature of biological and biochemical
systems, theoretical modeling of simplified or effective systems
has proven to be a valuable tool to dissect the prevailing
mechanism. Within the context of active drops as models for

symmetry-breaking and motility in eukaryotic cells and cell frag-
ments, many studies are limited to strictly planar geometries,11–15

neglecting the direction perpendicular to the substrate and, in
consequence, the physics of the curved free surface. In contrast,
fully three-dimensional (3D) hydrodynamic models are rare and
the full model behavior is costly to analyze.16 Alternatively, long-
wave approximations17 are employed to derive thin-film models
for shallow drops of active polar liquids18–24 and of passive
nematic liquid crystals.25–27 The latter approach may be extended
to the active case by endowing the nematic order with an active
stress and including evolution equations for the nematic order
parameter.21

One striking result of the above cited theoretical approaches is
that active contractile stresses related to nematic order are suffi-
cient to induce surface waves18 and drop (cell) motion.15,16,20,22

Indeed, fluid motion can be induced by spatial variations in the
director field (splay, bend) either normal22 or tangential to the
substrate.15,18,20 In the latter case, drop motion requires a polar
coupling between the liquid surface and the director field. The
current consensus is that self-propulsion is not required for
persistent motion as long as splay and bend configurations in
the director field can be maintained. However, the onset of motion
and the origin of the hysteresis observed experimentally in the
keratocyte system7 have not been studied in detail within this
context.
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Here, we provide a detailed analysis of the mechanism of
motility in active polar droplets with a free surface as a simple
physical model for cellular motility, reducing the biological
complexity to effective parameters and variables. Thereby we
focus on the effect of coupling the bulk polarization to the
drop’s free surface shape, a crude realization of the idea, that
the eukaryotic cell membrane nucleates Arp2/3 cross-linked
actin networks with their barbed ends oriented toward the
plasma membrane.28 Our simple approach captures drop
motion solely induced by active stress and polarization-
surface (PS) coupling. Surprisingly, motion does not depend
on splay/bend configurations in the bulk liquid, but rather on
the spatial variation of the polarization strength. The onset of
motion shows hysteresis, i.e., for a finite parameter range,
resting and moving states are both stable. Strikingly, this
bistability is reminiscent of the conversion between moving
and resting keratocytes that can be triggered by mechanical or
temperature stimuli.7,29 The hysteretic behavior persists for
passive droplets without contractility. In this case, stationary
asymmetric and symmetric drop shapes co-exist and corre-
spond to different forms of internal organization of the drop’s
polar constituents. We provide a simple argument based on an
effective free energy to account for the two competing forms of
internal drop organization which might be relevant for the
keratocyte system despite its biochemical complexity. A further
transition at high active stresses may destabilize and split
the drops.

2 The model

We consider a liquid drop composed of active polar constitu-
ents, which are oriented mainly parallel to the substrate. For
passive drops, the shape, spreading behavior and motion are
crucially determined by wetting phenomena on the substrate,30

an effect which is neglected by most models for active drops.
Here we employ a recently developed generic thin-film model
that provides a framework for the dynamics of free-surface
drops of partially wetting polar active liquids.31 It naturally
accounts for moving three-phase contact lines and allows for a
systematic study of the role of nematic and polar order and
their coupling to the free interface in inducing symmetry-
breaking and motility.

The droplet behavior is described by two dynamic variables,
the drop height profile h(t,r) and the height-averaged polariza-
tion p(t,r), which is assumed to be parallel to the substrate.

2.1 Underlying free energy of the passive polar droplet

The free energy functional F defines the passive part of the
evolution of h and p. Here we chose the minimal form

F½h; p� ¼
ð

g
2
ðrhÞ2 þ fwðhÞ þ hfspo h; p2

� ��
þ hfelðrpÞ þ fcouplðrh; pÞ

�
d2r;

(1)

where r denotes the Nabla operator in two dimensions. The
first term in (1) represents the liquid-gas surface energy with

the surface tension g. For the wetting energy fw we use a simple
form for partially wetting liquids consisting of a long-range
destabilizing van der Waals and a short-range stabilizing
interaction analogous to ref. 32–34, i.e.,

fw ¼
A

2h2
2ha

3

5h3
� 1

� �
; (2)

where A and ha denote the Hamaker constant and the adsorp-
tion (or precursor) layer thickness, respectively. Note, that the

equilibrium contact angle yeq is related to fw and g by cosðyeqÞ ¼

1þ fwðhaÞ
g

; see e.g., ref. 35. The function fspo accounts for

spontaneous polarization of the liquid, e.g., it may drive a
transition between an isotropic, i.e., microscopically disordered
state, and a polarized, i.e., microscopically ordered state. We
employ the double-well energy

fspo ¼ �
csp

2
1� 2kðhÞ½ �p � pþ csp

4
ðp � pÞ2; (3)

with csp 4 0 and k(h) = (ha/h)6.
Through the height dependence k(h) (which is chosen to

decay as the short-range interaction term in fw(h)), eqn (3)
allows for the existence of an ordered state |p| 4 0 in the drop
for h c ha while the adsorption layer (where h E ha) remains in
the disordered state |p| = 0 and does not influence the internal
organisation of the drop. The term fel accounts for a liquid
crystal elastic energy, with

fel ¼
cp

2
rp:rp: (4)

The final contribution, fcoupl, couples the polarization and the
gradient of the free surface profile via the energy

fcoupl ¼
chpa

2
p � rhþ chpv

2
p � r?h; (5)

where r>h = (�qyh,qxh)T. We emphasize that fcoupl captures
various types of polarization-surface (PS) coupling: chpa 4 0
favors an outward pointing aster-like polarization pattern,
whereas chpv 4 0 favors a vortex-like polarization pattern
(counterclockwise).

2.2 Equations of motion of the active polar droplet

The generalized evolution equations for the height profile h
and the components of the height-integrated polarization field
P = hp are given in their thermodynamic form by31

@th ¼ @a Qhh @a
dF
dh
� ma � @bsaab

� �
þQhPb@a

dF
dPb

� 	
(6)

@tPg ¼ @a QhPg @a
dF
dh
� ma � @bsaab

� �
þQPgPb@a

dF
dPb

� 	

�QNC
dF
dPg

:

(7)

It extends a gradient dynamics describing the overdamped
dynamics of a mixture driven by the underlying energy
functional36,37 towards a polar liquid and combines this passive
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dynamics with active forces, namely, the active stress tensor
ra = �capp (with ca 4 0 extensile and ca o 0 contractile stress)

and the self-propulsion force m ¼ m0
3Z
h3
P. Here, Z and m0 denote

the dynamic viscosity of the fluid and the self-propulsion
speed, respectively. QNC is a mobility (Brotational diffusivity)
related to the non-conserved flux in the polarization field. The
remaining mobilities in eqn (6) and (7) are given by

Qhh ¼
h3

3Z
(8)

QhPa ¼
h2Pa

3Z
(9)

QPaPb ¼ h
PaPb

3Z
þMdab

� �
; (10)

where M is the self-diffusivity of the polarization field. An
extensive discussion of the form (6)–(10) is found in ref. 31.

Finally, for comparison with the literature we write eqn (6)
and (7) in hydrodynamic form

qth = �r�(jCv + jCa) (11)

qtPa = �r�[pa (jCv + jCa) + jDPa] + jR
a (12)

with the passive fluxes

jCv ¼ �h
3

3Z
rdF

dh
þ Pb

h
rdF
dPb

� 	
; (13)

jDPa ¼ �hMrdF
dPa

; (14)

jRa ¼ �QNC
dF
dPa

: (15)

and the active flux

jCa ¼ h3

3Z
r � ra þ m0P: (16)

Note, that the above introduced framework uses a similar
minimal set of elastic, nematic and polar ingredients as ref. 16
with the important difference, that here we employ a thin-film
approximation including a wetting energy, whereas ref. 16 uses
a 3D phase-field approach, where the contact angle between the
‘‘eukaryotic cell’’ and the substrate is fixed at p/2. In contrast, in
our model the contact angle is fully dynamic and naturally
evolves with the shape of a drop moving through activity.

In the following, we neglect self-propulsion, i.e., we set m0 =
0, since with self-propulsion the resulting emergence of droplet
motion is evident. Instead, here we concentrate on the compe-
tition between elastic energy in the bulk ( fel), PS coupling
( fcoupl) and the strength of active stresses (mainly contractile
ca o 0). In particular, we focus on aster-like structures resulting
from PS coupling mechanisms (chpa 4 0, chpv = 0), reminiscent
of the organization of actin filaments (barbed ends pointing
towards the cell membrane) in living cells.

3 Phase diagram of active drops:
motility and drop splitting

Fig. 1(a) presents a morphological phase diagram obtained by
direct time simulations as described in the appendix. It sum-
marizes the role of active stress and PS coupling for drop
motility and morphology for a constant imposed elastic stress.
Without PS coupling [chpa = 0, orange region at bottom of
Fig. 1(a)], drops polarize uniformly, avoiding any defect struc-
tures in the bulk. These uniformly polarized drops remain at rest
not only in the passive case but also at any active stress since
they do not develop a back-forth asymmetry with respect to the
(nematic) active stress. Nevertheless, the drop shape adapts to
the active stress-type.

Increasing the PS coupling, the drop behavior becomes
more complex. Passive drops (ca = 0) are necessarily always at
rest but change their polarization state: from uniformly polar-
ized, to a boundary aster state with a half aster-like defect at the
contact line [light blue region in Fig. 1(a)] to a completely
radially symmetric central aster state with outward pointing
polarization [red region in Fig. 1(a) and example profile in
Fig. 1(f)]. The transition results from an increasing dominance
of the energy gain due to PS coupling over the elastic energy
cost due to a nematic defect in the bulk, i.e., fcoupl dominates fel.

The described sequence of structural changes is also essen-
tial in the active case (ca a 0): at weak PS coupling, the back-
forth symmetry in drop shape and polarization is broken
resulting in steadily moving drops [dark blue region in
Fig. 1(a) and profiles in Fig. 1(d) and (e)]. With active contrac-
tility the drop contracts along the direction of its net polariza-
tion and the back-forth asymmetry in the polarization
translates into steady drop motion. The defect is located at
the trailing edge of the drop [see Fig. 1(d)], consistent with
results of fully 3D hydrodynamic models16 and the planar
case.14,15 In contrast, an active extensile stress elongates the
drop in the direction of its net polarization. Transiently, liquid
is locally accumulated near the defect before the energetic cost
of surface and elastic energy reorients the polarization field and
forms a steadily moving drop as shown in Fig. 1(e). Here the
advancing drop edge coincides with the location of the defect.
For contractile active stress the above described mechanism of
structural polarity and onset of motion is illustrated in Fig. 2.

At strong PS coupling, a large active stress overcomes the
stabilizing effect of surface tension and large drops split into
smaller ones [yellow region in Fig. 1(a)]. Subsequently, splitting
continues until surface tension dominates. The result are
ensembles of smaller steadily moving drops [see snapshots in
Fig. 1(b) and (c)]. A phase diagram for smaller droplets is shown
and discussed in the appendix (Fig. 6). Then, for instance, the
transition to droplet splitting occurs at larger active stress
because the destabilizing active bulk flow is weaker than the
stabilizing surface tension that becomes more dominant for
smaller drops.

Fig. 1(g) shows how drop speed monotonically increases
with active stress ca before drops split at strong PS coupling
(where the black line ends). Strikingly, a close inspection in the
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range of low contractile stress reveals that hysteresis between
moving and resting drops occurs when changing the strength
of PS coupling chpa [Fig. 1(h)]. Starting with an axisymmetric
resting drop at chpa = 0.19, a successive decrease in chpa (black
dots) results in the transition to a moving polar drop at chpa E
0.07. However, starting with a moving drop at small chpa = 0.03,
a successive increase in chpa (gray crosses) only stops the drop
at chpa E 0.15. Such a coexistence of stable resting and stable
moving states is experimentally well documented for
keratocytes,7,29 but a conclusive mechanistic picture has been
missing.

A deeper understanding of the underlying mechanism of
motion and bistability can be gained by considering simpler
transversally invariant liquid ridges (2D drops). By employing
continuation techniques,38,39 we can follow stable and unstable
droplet states over a large range of contractility at low

computational cost. This provides clear information on hys-
teretic behavior. However, if splay and bend instabilities in the
polarization field were necessary to drive drop motion with
active stresses as abundantly argued in ref. 14–16, no motion
should be found for liquid ridges with a polarization mainly
parallel to the 1D substrate, i.e., without splay or bend. In
contrast, our computations for 2D drops reveal qualitatively
identical behavior as described above for 3D drops, and enable
us to further scrutinize the transitions between resting and
moving drops in ridge geometries without losing crucial moti-
lity features.

4 Structural hysteresis in passive and
active 2D drops

Fig. 3(a) shows the bifurcation behavior of passive ridges (ca = 0,
lines in strong colors) in dependence of the PS coupling
strength chpa. Corresponding drop and polarization profiles
are shown in Fig. 3(d–h). At small chpa stable uniformly polar-
ized drops with a back and forth asymmetry [solid blue curve,
e.g., Fig. 3(d)] coexist with unstable drops containing a central
polarization defect [dashed red and gray curves, e.g., Fig. 3(f
and g)]. At high chpa only (stable) symmetric drops with outward
pointing polarization and a central defect exist [solid red
dashed line, e.g., Fig. 3(e)]. The corresponding polarization
profile in 2D ridges is equivalent to the axisymmetric aster
structure for the 3D drops. The transition between the weak
and strong PS coupling is marked by a complex bifurcation
behavior with a multistable parameter range. Unstable drops

Fig. 2 Sketch of passive and active drops on a solid substrate. The height-
averaged polarization is shown as red arrows. The strengths of active stress
ca and the PS coupling chpa allow one to distinguish: (a) uniform polariza-
tion in a passive drop without PS coupling; (b) boundary aster in a passive
drop with weak PS coupling; (c) moving active drop of back-forth asym-
metric shape for contractility and PS coupling. The direction of motion is
indicated by the black arrow.

Fig. 1 Behaviour of active and passive 3D drops. (a) Morphological phase diagram in the plane spanned by the strengths of active stress ca and PS
coupling chpa. (b–f) Snapshots of moving and resting drops [height profile (blue) with overlayed polarization (black) and contact lines (red), gray arrows
indicate the direction of drop motion] at parameters indicated by symbols in (a). Drop velocity at constant chpa= 0.035 (g) and ca = �0.01 (h), as indicated
by solid and dashed black lines in (a). In (h) hysteresis is shown by black dots [gray crosses] obtained when successively decreasing [increasing] chpa, as
indicated by the arrows. A positive [negative] velocity corresponds to motion parallel [antiparallel] to the drop’s mean polarization. Shown domain sizes
are 400 � 400 (b and c), and 160 � 160 (d–f), which are only a small part of the full numerical domain O.
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with a central polarization defect gain stability in a pitchfork
bifurcation at cp

hpa = 0.131. The emerging branch bifurcates
subcritically and is unstable [dashed blue curve e.g., Fig. 3(g)]. It
represents boundary defect states. Following this branch, we
reach a saddle-node bifurcation at csn

hpa = 0.175 and observe that
the defect is further shifted toward the drop edge until it finally
coincides with it. At the saddle-node bifurcation the branch
turns back and becomes stable [solid blue line].

Remarkably, the transition between the two stable states
(central defect vs. boundary defect) shows a hysteresis between
cp

hpa and csn
hpa [yellow region in Fig. 3(a)]. This is also illustrated

by the representation of the free energy (fixed drop volume) fF
in Fig. 3(b): at small chpa, the boundary defect state corresponds

to the global energy minimum, while at large chpa the central
defect is as the only persisting state the global minimum.
Within the yellow hysteresis region, both states correspond to
energy minima and are separated by a saddle point in the
energy landscape.

4.1 Bistability between motile and stationary states in active
2D drops

The structural organization of the analyzed passive drops is
maintained in the active case, however, all states with back and
forth asymmetry, i.e., with boundary defects are motile. A
corresponding bifurcation diagram for active contractile drops
(ca = �0.005) is shown in light colors in Fig. 3(a) while the

Fig. 4 Bifurcation diagram for active polar 2D drops (ridges). (a) Velocities v of drops with a boundary defect (dark and bright blue) and a central defect
(red) are given as a function of active stress ca at fixed chpa= 0.17. (b) Bifurcation diagram related to the hysteretic transition between resting and moving
drops and drop splitting. Shown is the L2 norm of P over ca. Labels cs1

a to cs3
a , cp

a are explained in the main text. Dashed [solid] lines correspond to unstable
[stable] states. The strongly [weakly] yellow-shaded region indicates the bistability regime of moving and resting [two different moving] droplets. (c–h)
Film height (top) and polarization profiles (bottom) at ca values as indicated by symbols in (a and b).

Fig. 3 Hysteresis and motility in 2D drops (ridges). (a) Bifurcation diagram using the L2 norm of P over the strength of PS coupling chpa for drops with a
boundary defect (blue) and with a central defect (red and gray). Strong colors indicate the passive case ca = 0, light colors indicate the active contractile
case ca = �0.005. The pitchfork [saddle-node] bifurcation is marked cp

hpa [csn
hpa]. Dashed [solid] lines correspond to unstable [stable] states and the

bistability region is shaded yellow. (b) Free energy for central [boundary] defect states in red [blue] for passive drops. (c) Velocity of active drops
(ca = �0.005) for central [boundary] defect states in light red [blue]. (d–h) Height (top) and polarization (bottom) profiles at chpa values indicated in (a).
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corresponding drop velocities are shown in Fig. 3(c). With
increasing contractility, the pitchfork bifurcation at cp

hpa is
shifted towards larger values of chpa. Interestingly, an addi-
tional saddle-node bifurcation appears on the blue branch
rendering the pitchfork bifurcation at cp

hpa supercritical. In
consequence, an additional sub-branch of stable moving drops
exists in the active case. Hence, there is now a range of
bistability between two different moving states adjacent to
the range of bistability between a moving and a resting state.

To further clarify the active droplet behavior we also studied
the influence of the active stress at constant PS coupling (chpa =
0.17 where hysteresis occurs). A corresponding bifurcation
diagram is presented in Fig. 4 where panels (a) and (b) show
the drop velocity and L2 norm of P, respectively. Exemplary
drop and polarization profiles are shown in panels (c–h).
Briefly, for contractile stress we find a hysteresis regime with
motile droplets coexisting with stationary droplets [dark yellow
region in Fig. 4(a and b)]. In addition, there exists a complex
bifurcation scenario related to drop splitting. An important
observation is that back and forth asymmetric stable drops with
a boundary defect are motile at arbitrarily low stress. In addi-
tion, a second stable motile asymmetric off-center defect drop
[light blue solid branch in Fig. 4(a)] emerges at a finite
contractile stress via a pitchfork bifurcation (at cp

a = �0.0105)
that renders the stationary symmetric drops with a central
defect [red branch in Fig. 4(a)] unstable. The two coexisting
types of motile drop move at different speeds. They are con-
nected via an unstable branch and two saddle-node bifurca-
tions (at cs1

a = 0.0068 and cs2
a =�0.0177). The direction of droplet

motion depends on the type of active stress and the direction of
net polarization, i.e., right-polarized drops move to the right
[left] for contractile [elongational] stress [Fig. 4(c and d)].

Stationary drops with a central defect only exist for ca 4 cs3
a =

�0.0207 where they merge via a saddle-node bifurcation with a
branch of split drops [orange dashed in Fig. 4(a and b)]. The
latter is unstable and ends at ca = 0 on a branch related to the
coarsening of passive drops (not shown). A more extensive
representation of the behavior of 2D droplets at different PS
couplings chpa and varying active stress ca can be found in the
morphological phase diagram in Fig. 7 in the appendix. The
results of Fig. 3 and 4 correspond to cuts through this diagram.

4.2 A passive structural hysteresis at the origin of bistability in
cell crawling

The occurrence of moving ridges clearly evidences that liquid
motion results from a spatial modulation of the strength and
not the orientation of polarization. Although splay may con-
tribute to motion in 3D drops, the described moving ridges
directly point to the polarization strength as primary origin of
motility. The similarity of velocities in our 2D and 3D cases
[Fig. 1(g) and 4(a)] suggests that splay is of little importance. A
central feature of the complex bifurcation diagrams in Fig. 4
and 3 are the regions of bistability of a polar moving state and a
symmetric resting state. This bistability qualitatively corre-
sponds to the hysteresis behavior for the transition of a resting
aster state to a moving boundary aster state in 3D. In the

biological context, this means that at a given contractile stress
ca and PS coupling chpa drops (cells) may coexist in a stable
moving state with uniform polarization and a stable symmetric
resting state. The two states are separated by an unstable
(moving) threshold state, i.e., the interconversion between
resting and moving states requires a finite perturbation. For
example, an insufficiently strong perturbation of the resting
state only results in transient motion. Increasing the contractile
stress beyond a critical value, the resting state loses stability
and a persistently moving state is reached.

These qualitative features may be illustrated employing a toy
model based on a simple energy argument neglecting the
complex droplet dynamics. It emphasizes the key idea that
orientational order induced by the droplet boundaries and the
energetic costs of defects in the bulk facilitate a transition
between symmetric and polar droplet states. We consider a
simplified 1D droplet, whose polarity is described by two
variables, i.e., the polarizations at the right and left boundary,
pR and pL, respectively. Neglecting spatial gradients and con-
tributions from the free interface we can write the free energy %F
in terms of pR and pL

�F ¼ 1

4
pR

4 þ pL
4

� �
� 1

2
pR

2 þ pL
2

� �
þ �cp

4
pR � pLð Þ4þ�cp

2
pR � pLð Þ2

� �chpa pR � pLð Þ:

(17)

The first line in eqn (17) describes the energy of polarization at
the right and left interfaces as a respective double-well
potential that allows for two polarization directions, the second

Fig. 5 PS coupling at the origin of a structural transition with hysteresis in
polar droplets in a toy model [eqn (17)]. Bifurcation diagrams giving (a) the
L2 norm of the polarization, (b) free energy, (c) the droplet speed %v = pR

2 �
pL

2, and (d) the polarizations pR and pL in the presence of active stress
using the PS coupling strength %chpa as control parameter. The line colors
correspond to the three different polar organizations shown schematically
in (e). Thick and thin lines in (d) correspond to pR and pL, respectively. The
black square symbols delimit the range of coexistence of stable polar and
stable symmetric drops (solid blue and solid red lines). The elastic constant
is %cp = 0.2.
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line encodes the elastic energy due to the difference in the
polarization directions at the two interfaces and the last line
introduces the PS coupling. In the presence of an active con-
tractile nematic stress Bpp, a difference in the magnitude of
polarization pR

2 a pL
2 will induce a pressure difference

between the two interfaces and hence droplets experience a
driving force and move with a speed %v B pR

2 � pL
2. The passive

structural organization of such simple droplets [Fig. 5(d)] and
the resulting bifurcation diagrams [Fig. 5(a and b)] are all given
by the extrema of the potential (17). A comparison of Fig. 3 and
5 shows that the results obtained with this simple scheme
resemble in its essential features the behavior of the full
dynamical model. Namely, there is a polar state which moves
in the presence of active stress, and two symmetric states (one
stable and one unstable) that are at rest. Even the structural
hysteresis is present as stable stationary symmetric and stable
polar (moving) states share a range of coexistence in the PS
coupling strength.

5 Conclusions

To conclude, we have modeled shallow three-dimensional (3D)
active free-surface drops with a mean polar order parallel to the
substrate. Incorporating a polarization-surface (PS) coupling
has allowed us to identify a mechanism of motility in which
active stresses drive drop motion through spatial variations of
polarization strength. Motility is induced even for liquid ridges
(2D drops), implying that splay in the polarization field is not
essential for the mechanism. This provides an alternative to
previous proposals based on splay or bend.14–16 Living cells
exert a tight control over the cytoskeleton via signaling path-
ways which are partially localized in the cell membrane, i.e., the
machinery necessary for the growth and architecture of polar
Arp2/3 cross-linked actin networks and linear filopodia struc-
tures induced by formins is localized at the plasma
membrane.28 Within the context of active drops as minimal
models for living cells a fine tuning of the PS coupling by the
cell is a reasonable assumption. Thus, the physico-chemical
and mechanical properties of active polar filament assemblies
may play an important role in the robustness of cell migration
in addition to complex biochemical signaling pathways.

Furthermore, our model provides a possible mechanism of
bistability in the keratocyte system based on well-identified
physical components (encoded in a variational model) and
active stress, without the need for complex biochemical feed-
back mechanisms.11,29,40
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Appendix
A: Numerical details

Direct time simulations are performed employing the open
source library oomph-lib,41 which solves the evolution equa-
tions using Finite Elements and Newton’s method. For the time
steps Backward Differentiation Formulas of second order
(BDF2) are employed. An adaptive grid is used for spatial
resolution, in the case of 3D drops for domain size O = 800 �
800 and for 2D drops for domain size L = 600, in each case with
periodic boundary conditions in x-direction (and in the 3D case
additional no-flux boundary conditions in y-direction). All 3D
simulations were started with a paraboloid of height h0 = 20
with drop volume V3D ¼

Ð
Ohdx ¼ 71 822 above precursor ha,

and all 2D simulations (including path-continuation) corre-

spond to drop volume of V2D ¼
Ð L
0
hdx ¼ 8280 above ha. Simula-

tions for Fig. 1 were initiated with small, random polarization
into x direction and ca was introduced into the system at t = 5 �
104 with T = 105 the overall time of simulations. For moving and
resting states some simulations are continued beyond the usual
t = 105 up to t = 1012 increasing the likelihood that these states
are steadily moving and not only transients. In Fig. 1(b–f), red
lines indicate the contact lines of the drops’ shape. They are
obtained as contour lines of the height field slightly above the
adsorption layer thickness, namely, at h = 3.0 in Fig. 1(d–f), at
h = 1.5 in Fig. 1(b and c).

For the purpose of continuation, the equations of motion (6)
and (7) are transformed into a co-moving reference frame with
velocity v. Based on the pseudo-arclength continuation, resting
and moving states can be followed in parameter space (using
the velocity v as additional degree of freedom) employing
pde2path39 or auto07p.38 The bifurcation diagrams in Fig. 3
and 4 were created using the homotopy method, i.e., by
successively changing various parameters from zero to increase
the degree of nonlinearity.

Parameter settings

If not stated otherwise the following parameters are fixed for all
calculations: cp = 2.0, csp = 0.01, QNC = ha = M = A = Z = 1.0, m0 = 0.

Decreasing QNC changes the bifurcation diagram as the
dynamics of the polarization field is increasingly dominated
by the conserved, i.e., convective, contribution. The parameter
thus affects the occurrence of bistability between boundary and
central defect states in the passive case, so that it cannot be
found for certain values of QNC. Thus, the additional specifica-
tion of contractility would mean that no bistability can be
found between stationary and moving states. In a biophysical
context, however, it seems highly unlikely that the dynamics of
the polarization is nearly conserved. On the contrary, the
polarization should be able to change rapidly, which legiti-
mizes the choice of QNC = 1. Note, that bistability is very robust
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when varying the parameter M, i.e., the bifurcation diagram in
Fig. 3 does (merely) not change. Other parameter choices result
from nondimensionalization, thus are not arbitrary. We set
QNC = 1 and M = 1 to ensure that all occurring processes happen
on similar time scales.

Phase diagram for droplets of small volume

We have additionally performed a parameter scan comparable
to Fig. 1(a) in the plane spanned by ca and chpa, however, this
time for droplets which have a considerably smaller volume
than the ones in Fig. 1(a). The resulting phase diagram is given
in Fig. 6. Although it qualitatively resembles Fig. 1(a), the
boundary where moving or resting drops become unstable
and drop splitting sets in is shifted to higher active stresses.
This highlights the stabilizing role of surface tension. As sur-
face forces play an increasingly important role with decreasing
drop size larger active bulk forces are needed for droplet
splitting to occur.

Moreover, the structural transition for passive systems
(ca = 0), from boundary aster (light blue in Fig. 6) to central
aster (red) is shifted to stronger PS coupling. Here the smaller
droplet size heavily penalizes the formation of the central
defect (i.e., the creation of a defect is more unfavorable com-
pared to the bulk polarization energy in small drops than in
large drops), requiring a stronger PS coupling.

Phase diagram for 2D drops (ridges)

In the main text two bifurcation diagrams [cf. Fig. 3 and 4] are
presented showing the relation between various branches of
passive and active 2D droplets, i.e., ridges. The interplay of the
various bifurcations explains the origin of parameter regions of
bistability. This is further illustrated in the morphological
phase diagram in Fig. 7, again spanned by the active stress ca

and the PS coupling chpa. It is compiled on the one hand by
direct time simulations, performed in a similar way as
described above for the case of 3D droplets in Fig. 1. On the
other hand, we directly focus on the onset of motion and the
most interesting bistable region. To do so, we use continuation
methods to directly track saddle-node and pitchfork bifurca-
tions in parameter space. This has allowed us to identify the
region of coexistence between moving and resting droplets
(labeled ‘‘bistable region’’ in Fig. 7). In addition, we have
identified the coexistence region of two different moving states,
which we show and discuss already in Fig. 3 and 4.

Parameter continuation. We start the continuation from the
passive case, and follow the pitchfork bifurcation cp

hpa in Fig. 3
when ca is varied. This bifurcation actually is identical to the
pitchfork bifurcation at cp

a in Fig. 4(a and b). This becomes clear
when looking in Fig. 7 at a cut along the horizontal defined by
chpa = 0.17. Furthermore, we track the saddle-node bifurcation
at csn

hpa in Fig. 3 when changing ca which is identified with the
saddle-node bifurcation at cs1

a in Fig. 4(a and b). The parameter
range between these two bifurcation corresponds to the region
of bistability.

Direct simulations. The outcome of the direct time simula-
tions heavily depends on the pathway taken into the stable
state, which is why we briefly describe the numerical develop-
ment in the following. The simulations start with a small

Fig. 6 Morphological phase diagram for 3D droplets as in Fig. 1(a), how-
ever, for droplets with approximately a fifth of the volume. The occurring
states are as in Fig. 1(a), however, the transitions take place at different
values of ca and chpa.

Fig. 7 Phase diagram for 2D droplets obtained by direct time simulations
and also including loci of saddle-node and pitchfork bifurcations obtained
by continuation. Each time simulation is initiated with a passive droplet at
the respective PS-coupling chpa and after an equilibration period (more
details in the text) an additional active stress ca is introduced. The final
states are characterized according to the color bar given at the bottom.
The region where bistability between resting and moving droplets occurs
lies between the two white lines cs1

a and cp
hpa, i.e., the respective saddle-

node and pitchfork bifurcations. Another bistable region exists between
the two white lines marked cp

a and cs2
a . There, moving states with a

boundary defect and with an off-center defect both exist as stable states.
The bifurcation lines are only shown where they are relevant for regions of
bistability.
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random polarization, which first grows at the drop edges and
then spreads into the bulk of the drop. If the PS coupling is
zero, in this way a uniformly polarized droplet is formed.
However, as soon as the coupling deviates from zero, i.e.,
chpa 4 0, the energy contribution of the PS coupling initially
predominates and opposite polarizations form at the two drop
edges [cf. eqn (5)]. These develop initially into a central defect
over time. Depending on the strength of the PS coupling [cf.
energy of the central vs. boundary defect states in Fig. 3(b)], the
polarization may further evolve into a boundary defect due to
the prevailing elastic energy contribution fel. However, if the
coupling lies in the bistable region [cf. yellow region in
Fig. 3(b)], the central defect state corresponds to a local mini-
mum in the free energy. Therefore, it remains linearly stable
and it takes a strong perturbation to shift the state to the global
minimum, i.e., the boundary defect state [corresponding to the
blue line in Fig. 3(b)]. The transition from the boundary defect
to the central defect in the performed direct time simulations,
thus, occurs at chpa = 0.13 [= cp

hpa in Fig. 3(b)] and the global
minimum of the free energy is not always adopted.

Since all the time simulations identically start with a passive
drop (at respective chpa values) before active stress is added, the
sharp horizontal border between the blue and red areas at ca Z

0 directly reflects the occurring bistability in the passive case,
i.e., along the vertical line at ca = 0.

For values of active stress greater than cs1
a , only the stable

resting central defect states exist, which is confirmed by the
direct time simulations. For values smaller than cp

a, only mov-
ing states with off-center and boundary defect are stable. In the
region between cp

a and cs2
a we mainly find the off-center defect

state where the defect is somewhere between the center and the
boundary [cf. Fig. 4(a and b)]. Below cs2

a only moving boundary
defect states occur. The saddle-node bifurcation cs2

a is also
traced in the (ca,chpa)-plane and is included in Fig. 7. We
note that Fig. 7 indicates the existence of bifurcations of
codimension two. A deeper analysis of the changes occurring
there remains a task for the future. Therefore, we only show
continuation results directly related to the bistabilities
discussed here.
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