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Thin-film modeling of resting and moving active droplets
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We propose a generic model for thin films and shallow drops of a polar active liquid that have a free surface
and are in contact with a solid substrate. The model couples evolution equations for the film height and the local
polarization in the form of a gradient dynamics supplemented with active stresses and fluxes. A wetting energy
for a partially wetting liquid is incorporated allowing for motion of the liquid-solid-gas contact line. This gives
a consistent basis for the description of drops of dense bacterial suspensions or compact aggregates of living
cells on solid substrates. As example, we analyze the dynamics of two-dimensional active drops (i.e., ridges)
and demonstrate how active forces compete with passive surface forces to shape droplets and drive their motion.
In our simple two-dimensional scenario we find that defect structures within the polarization profile drastically
influence the shape and motility of active droplets. Thus, we can observe a transition from resting to motile
droplets via the elimination of defects in the polarization profile. Furthermore, droplet motility is modulated by
strong active stresses. Contractile stresses even lead to topological changes, i.e., drop splitting, which is naturally
encoded in the evolution equations.
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I. INTRODUCTION

Active media far from thermodynamic equilibrium display
a rich spectrum of bulk phenomena. Mesoscale turbulence
in bacterial suspensions [1], the emergence of large-scale
structures in microtubule-motor assemblies [2–4], and dynam-
ical clustering in bacterial colonies [5,6] or suspensions of
artificial Janus particles [7] are some examples of intriguing
reported observations. In these systems the nonequilibrium
character manifests itself via the generation of active stresses
and/or the self-propulsion of active particles. When active
matter features a free surface, motility-induced active forces
compete with passive interfacial forces. This results in novel
features, e.g., vortex flows in bacterial suspensions confined
into an oil-immersed drop [8], spontaneous symmetry break-
ing in the actin cortex at the interface of water-in-oil emul-
sions induced by myosin activity [9] and the autonomous
self-sustained motion of freely suspended droplets containing
microtubule-motor assemblies [10].

Swarming bacterial colonies or compact aggregates and
thin layers of living cells with free edges form a special class
of soft active media where a free surface is in contact with a
solid substrate. In some cases, the concept of passive wetting
can be employed to gain insight into the dynamics of these
systems. When a drop of passive liquid is deposited on a
solid substrate, the shape of the drop is determined solely
by the interfacial tensions of the involved interfaces and its
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equilibrium three-phase contact angle can directly be obtained
from Young’s law [11]. In the embryogenesis of zebrafish,
the collective cell migration follows the laws of wetting
[12] and the observed shapes can roughly be explained by
variations of the interfacial tensions. Also the spreading of
cell aggregates at long times has been successfully studied as a
wetting problem [13,14]. However, the ability of the active liq-
uids’ constituents to polarize and generate active stresses can
drastically affect the dynamics. Recently, it has been shown
that a wetting transition in a thin layer of epithelial tissue
on a collagen surface can be explained by the competition
between traction forces and contractile intercellular stresses
[15]. In the epiboli of zebrafish, tissue contraction results in
anisotropic stresses that affect the shape of the egg [16]. These
examples show that the interplay of passive interface forces,
i.e., capillarity and wettability, and of activity is a crucial
determinant of the dynamics of droplets of living matter on
surfaces. However, the consistent theoretical description of
the droplet’s dynamical properties constitutes a challenge and
shall be the objective of the present work.

In a coarse-grained modeling approach, active bulk liquids
can be described by a small number of macroscopic fields,
such as the particle density and a macroscopic polarization.
Usually, the polarization is hereby defined as the local aver-
age over the orientation of the individual constituents which
at high densities typically tend to orientationally order (for
reviews see, for example, Refs. [17–19]). One important class
of coarse-grained models for active media is based on liquid
crystal hydrodynamics [20,21]. Activity is introduced into this
passive theory by endowing the constituents of the liquid
with self-generated active stresses. The resulting evolution
equations for the macroscopic fields are either derived from
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microscopic theory [22–24] or are phenomenologically de-
rived based on symmetry arguments [25]. In the context of the
cytoskeleton of living cells, a description of active polar gels
[26–29] is developed and successfully applied to study, e.g.,
the effect of defect structures [30], the transition to sponta-
neous flow [31], concentration banding [32], multicomponent
[33], and compressible [34] active polar films.

Thin layers of a suspension of active particles in the gap
between parallel solid plates are considered in Refs. [35] and
[36,37], for resting and sheared plates, respectively. Inspired
by cellular motility, several studies consider active liquids
with free boundaries suspended in a passive fluid using phase-
field models [38–41]. Thereby evolution equations for the
active matter are coupled to a description of the surrounding
passive fluid, i.e., to the Navier-Stokes or Stokes equations.
Activity is found to lead to spontaneous symmetry break-
ing accompanied by deformation and self-propulsion of the
droplet.

Active droplets in contact with flat solid surfaces are stud-
ied within the context of cell crawling [42–44]. However, the
employed models are two-dimensional (2D) and only consider
the dimensions parallel to the substrate. The direction perpen-
dicular to the substrate is neglected, i.e., height profiles are
not considered. Interfacial forces are incorporated via a line
tension (or its equivalent in a diffuse interface description)
between the active and passive phase. The presence of the
solid substrate is incorporated via solid friction terms.

Alternatively, recent direct numerical simulations of three-
dimensional (3D) drops of an active liquid with contractil-
ity and treadmilling find motile (stationary moving) states
of biologically relevant shapes [45]. They use an advanced
phase-field model, namely, an active version of model-H [46],
but seemingly do not implement a parameter controlling the
contact angle, i.e., the physics of the contact of the active fluid
drop with the solid substrate is not explicitly considered. Their
figures indicate a fixed 90 degree microscopic contact angle,
implicitly enforced via boundary conditions. A treadmilling
speed is imposed in a finite thickness layer near the substrate.

Since simulations of 3D active droplets on substrates are
computationally expensive, some studies employ a long-wave
approximation [47,48] to derive thin-film models of passive
nematic liquid crystals [49–51] and active polar gels [52–55].
In particular, Ref. [55] derives a thin-film theory for an active
liquid crystal based on the Beris-Edwards theory that uses
a tensorial order parameter (instead of a polarization field).
Thin-film models for active polar liquids are employed to
study wave-forming linear instabilities of free-surface films
[52]1 and the effect of a highly symmetric polarization field
on steady drop shapes and the scaling law for drop spreading
in the limit of dominant active stress [53]. A recently proposed
model for droplets of active nematics derives an effective thin-
film model for the evolution of the film height profile [57] and
describes transformations in drop shape and drop motion with
increasing active stress. It employs slip at the substrate, di-

1As they introduce their model as a generalization of the passive
model developed in Refs. [49,56], and that paper was shown to have
an arguable elastic contribution [50], the status of the model is not
clear.

rectly imposes a static microscopic contact angle and assumes
instantaneous adaptation of the polarization profile to changes
in the height profile. It is further analyzed in Ref. [58] where
also the case of drop motion driven by self-propulsion is con-
sidered. Further, the self-propulsion of active drops has been
associated with topological defects in the polarization field in
a model that prescribes static polarization patterns and drop
profiles and employs a long-wave approximation to determine
the induced instantaneous velocity field and instantaneous
propulsion velocity, without specifying a fully dynamical
model [54]. Steady shapes of resting drops are also obtained
there. Note, that none of the mentioned thin-film models of
active media provides a closed form of fully nonlinear coupled
evolution equations for film height profile and polarization
field. Neither are dynamic wetting effects captured. However,
one striking result seems to emerge from both, thin-film and
fully three-dimensional active liquid approaches: macroscopic
motion does not require active self-propulsion in polar liq-
uids. Active contractile stresses related to nematic order are
sufficient to induce waves [52] and droplet motion [38,54].
In general, the literature only scarcely addresses the interplay
between active stresses and self-propulsion on the one hand
and passive wetting and interfacial forces on the other hand.
Here, we present a thin-film model that allows for a systematic
study of the interplay between activity (self-propulsion and
active stresses) and passive wetting forces for partially wetting
liquids that form droplets with a finite contact angle on solid
substrates. In a first model analysis of 2D active droplets we
are investigating how wetting and active forces combine to
shape the droplet and to naturally induce droplet motion.

In Sec. II, we construct a generic phenomenological model
that couples evolution equations for the film height profile
of the liquid and its local height-integrated polarization. The
passive part of the model is written as a gradient dynamics
on an underlying free-energy functional that explicitly in-
cludes wettability. The passive model is then supplemented
by self-propulsion and active stresses that enter in the form
of additional nonvariational terms. We discuss the individual
contributions to the energy functional and reduce the model
further for 2D droplets (i.e., liquid ridges on 1D substrates).
Section III analyzes the linear stability and the dewetting
of flat films of active liquids while the subsequent Sec. IV
focuses on the dynamics of 2D (active) drops. In particular,
we investigate drop shapes and motion in the weak and
strong activity regime, depending on the defect structure in
the polarization field within the droplet. We conclude with
a summary and outlook in Sec. V that includes a discus-
sion of literature models in the context of our obtained
results.

II. MODEL FOR ACTIVE POLAR DROPS

We develop a generic model that couples an evolu-
tion equation for the height profile of the droplet to the
dynamics of a polarization field. In the following, we
first introduce the general modeling framework before dis-
cussing the specific choices for the energetic contributions
and presenting the model equations in a one-dimensional
geometry.
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FIG. 1. Droplet of active polar liquid on a solid substrate. The
polarization p(x, t ) (red arrows) represents the local height-averaged
value of the polarization of the individual particles (gray arrows in
the inset). Its dynamics is coupled to the dynamics of the film height
h(x, t ). The local height-integrated polarization is given by P(x, t ) =
h(x, t ) p(x, t ).

A. Model framework and structure

We consider an active polar liquid film of height h(x1, x2, t )
and introduce the polarization field p(x1, x2, t ) as the height-
averaged value of the local microscopic z-dependent polar-
ization of the individual particles as sketched in Fig. 1. We
assume ad hoc that the component of the local polarization
perpendicular to the substrate is small as compared to the
components parallel to the substrate. In consequence we only
consider the latter components and write

p =
(

p1(x1, x2, t )
p2(x1, x2, t )

)
. (1)

In other words, we assume that polarization is nearly parallel
to the substrate and replace its local strength by its verti-
cally averaged value which forms a basic variable in our
phenomenological model. Although we study an active polar
liquid, we construct the passive core of our model as a gradient
dynamics on a free-energy functional. This guarantees that in
the absence of activity it describes the approach to and the
characteristics of well-defined steady equilibrium states. In
particular, we introduce the free-energy functional F[h, p],
that accounts for various effects that may influence the dynam-
ics of the polar liquid droplet. Namely, we consider capillarity,
wettability, spontaneous polarization, the elastic energy of the
polarization and a coupling between the polarization vector
and the shape of the free surface of the drop (see Sec. II B
below). The dynamics of a passive polar liquid close to
equilibrium is modeled by constructing a gradient dynamics
based on the energy functional F[h, p]. However, F[h, p]
needs to be expressed in independent variables. We therefore
introduce the local height-integrated amount of polarization
P = hp and perform the transformation

F [h, P] = F[h, p(h, P)]. (2)

Activity is introduced into the model by two nonvariational
terms that force the system out of equilibrium and which break
the Onsager symmetry of the gradient dynamics. The first
contribution is the active stress σa with the components [19]

σ a
k j = −ca pk p j, (3)

where j, k = 1, 2. The active stress is extensile for ca > 0
(describing, e.g., bacterial suspensions) and contractile for
ca < 0 (describing, e.g., actomyosin solutions). The second
active contribution is the self-propulsion of the particles in the

direction of their polarization p. It gives rise to an active force
of the form

α = α0
3η

h2
p = α0

3η

h3
P =

∑
k

αkek, (4)

where α0 is a constant and η denotes the viscosity. The self-
propulsion breaks the P → −P symmetry of the model. By
combining the passive and the active contributions, we obtain
the general form of the coupled evolution equations for film
height h and polarization P

∂t h =
∑

k

∂xk

[
Qhh

(
∂xk

δF

δh
− αk −

∑
j

∂x j σ
a
k j

)

+
∑

j

QhPj ∂xk

δF

δPj

]
, (5)

∂t Pi =
∑

k

∂xk

[
QhPi

(
∂xk

δF

δh
− αk −

∑
j

∂x j σ
a
k j

)

+
∑

j

QPiPj ∂xk

δF

δPj

]
− QNC

δF

δPi
. (6)

Here ∂xk refers to the partial derivative with respect to coor-
dinate xk . In contrast to film thickness, polarization is not a
conserved quantity. It describes a certain order that may occur
spontaneously and can also be created by the surface profile.
The respective mobility is QNC. The remaining mobilities,

Qhh = h3

3η
,

QhPi = h2Pi

3η
= h3 pi

3η
, (7)

QPiPj = h
(PiPj

3η
+ Mδi j

)
= h3 pi p j

3η
+ hMδi j,

correspond to scalar, vector, and tensor quantities, respec-
tively, and can be understood in analogy to Ref. [59] where an
analogous thin-film model for a mixture of scalar quantities is
discussed. The evolution Eqs. (5) and (6) for film height and
polarization can be expressed in the hydrodynamic form,

∂t h = −∇ · jC,

∂t Pi = ∂t (hpi ) = −∇ · (
pijC + jDPi

) + jR
i , (8)

by introducing the convective flux jC, the diffusive fluxes jDPi

and the reactive flux jR
i as

jC = − h3

3η

(
∇ δF

δh
−

∑
j

Pj

h
∇ δF

δPj
− ∇ · σa

)
+ α0P,

jDPi = −hM∇ δF

δPi
, (9)

jR
i = −QNC

δF

δPi
,

respectively. The mass conservation for the liquid implies
that the first line in Eq. (8) has the form of a continuity
equation. The polarization evolution, i.e., the second line
in Eq. (8) combines a conserved dynamics representing the
transport of polarization by diffusion and with the liquid flow
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FIG. 2. Schematic illustration of the effect of the energetic con-
tributions occurring in droplets of polar active liquids. (a) Fspo

describes a spontaneous transition between an isotropic, microscop-
ically disordered state with |p| ≈ 0 to an ordered state with |p| ≈ 1.
(b) Fel is a liquid crystal elastic energy that represents the energetic
cost of horizontal gradients in the polarization. (c) Fcoupl couples the
polarization to the gradient of the free interface. Shown is an example
for chp > 0 where a polarization along the liquid-solid-gas contact
line is energetically favored. Note, that we assume p to be always
parallel to the substrate.

by convection with a nonconserved reactive flux describing
reorientation, e.g., due to spontaneous polarization and rota-
tional diffusion.

B. Specific choices for the energies

Now, we specify the individual contributions to the free-
energy functional that underlies the dynamics of the active
droplet. We employ

F[h, p] =Fcap + Fw + Fspo + Fel + Fcoupl

=
∫ [

γ

2 (∇h)2 + fw(h) + h fspo(h, p2)

+ h fel(∇p) + fcoupl(∇h, p)
]
dx. (10)

Namely, Fcap models capillarity, i.e., it consists of the energy
of the liquid-air interface (in long-wave approximation) where
γ denotes the interfacial tension. The second contribution,
Fw, represents wettability and accounts for interactions be-
tween the liquid and the underlying substrate. For a partially
wetting simple liquid that forms drops of finite equilibrium
contact angle coexisting with a thin adsorption layer of height
ha [11,60], we employ the wetting energy,

fw(h) = A

(
− 1

2h2
+ h3

a

5h5

)
, (11)

where A denotes the Hamaker constant [61].
The contribution Fspo accounts for spontaneous polariza-

tion of the liquid and, e.g., drives a transition between an
isotropic, microscopically disordered, and a polarized state as
illustrated in Fig. 2(a). We employ the double-well energy

fspo(p2) = −csp2

2
[1 − 2βκ (h)]p · p

+ csp4

4
(p · p)2, (12)

with csp2, csp4 > 0, β > 1
2 , and

κ (h) = ha fw(h)

h fw(ha)
. (13)

Depending on the film height h, Eq. (12) allows for the
existence of a disordered (|p| = 0) and an ordered state

(|p| =
√

csp2

csp4
[1 − 2βκ (h)]). Note that |p| is the strength of the

polarization, i.e., it measures the amount of aligned particles.
In the adsorption layer one has limh→ha κ (h) = 1, i.e., the
disordered state |p| = 0 is the only possible (stable) state. For
large film heights κ → 0, the disordered state looses stability

and the energetically favored ordered state |p| =
√

csp2

csp4
is

adopted. Unless otherwise specified we chose csp2 = csp4 =
csp, i.e., |p| = 1. The choice of the parameter β > 1

2 controls
the film height above which the ordered polarization state can
exist. Here we restrict ourselves to the choice β = 1.

The contribution Fel accounts for a liquid crystal elastic
energy, with

fel(∇p) = cp

2
∇p : ∇p (14)

representing the energetic cost of gradients in the polarization
along the substrate as illustrated in Fig. 2(b). For simplicity,
we assume the same value of stiffness associated with splay
and bend deformations, i.e., we use the single elastic constant
cp [21]. The final contribution, Fcoupl, couples the polarization
and the gradient of the free surface via the energy

fcoupl(∇h, p) = chp

2
(p · ∇h)2. (15)

The constant chp can be chosen positive for an alignment of
the polarization field parallel to the interface as shown in
Fig. 2(c, bottom) or negative (for an alignment of p parallel to
∇h). Note that alternatively, coupling terms ∼p · ∇h may be
applied to energetically favor an outward or inward pointing
polarization.

C. Liquid ridge (2D) geometry

To investigate the basic behavior of the developed model,
we consider the case of a 1D substrate. With other words
we assume that the system is translation-invariant in the x2-
direction, i.e., all gradients and the polarization component
in x2-direction vanish. Then, the evolution equations strongly
simplify as polarization and all mobilities become scalar
quantities. In the following, we use the notations x = x1,
p = p1 and P = hp1. In consequence, we neglect the coupling
between polarization and interface slope, since the polar-
ization cannot minimize anymore the interaction with the
interface by rotating in the substrate plane. However, still the
coupling between film height and polarization guarantees that
the polarization decays to zero in the contact line region. The
variations of F [Eqs. (2) and (10)] with respect to film height
and polarization then read

δF

δh
= − γ ∂xxh + ∂h fw + fspo + h∂h fspo

− p∂p fspo + cp

2
(∂x p)2 + cp p

h
∂x(h∂x p), (16)

δF

δP
= ∂p fspo − cp

h
∂x(h∂x p). (17)

The time evolution is given by

∂t h = −∂x jC, (18)

∂t (hp) = −∂x(p jC + jD) + jR, (19)

062802-4



THIN-FILM MODELING OF RESTING AND MOVING … PHYSICAL REVIEW E 101, 062802 (2020)

with the x1-component of the fluxes Eq. (9),

jC = − h3

3η

[
∂x

(
δF

δh

)
+ p ∂x

(
δF

δP

)
+ ca∂x(p2)

]
+α0hp,

jD = −hM∂x

(
δF

δP

)
, (20)

jR = −QNC
δF

δP
.

Note, that fspo does not contribute to the convective flux jC

as the respective terms cancel out. This is analogous to the
fact that for a thin film of a liquid mixture or suspension the
osmotic pressure does not contribute to the convective flux
[62]. In the following, we analyze the developed model for
active polar liquids in the 2D case. On the one hand, the film
and drop dynamics is studied by time simulations employing
finite element schemes provided by the modular toolbox
DUNE-PDELAB [63,63] and the open source library oomph-lib
[64]. On the other hand, we employ pseudo-arclength path
continuation techniques [65–67] to efficiently study the effect
of parameter changes on the properties of steady sitting and
steadily moving drops. To do so we transform the evolution
Eqs. (18) and (19) into a frame moving with a constant ve-
locity v and use the continuation package PDE2PATH [68,69].
First, we consider flat homogeneous films and discuss the
instabilities introduced by the passive and active components
of the model. Next, we show that the model describes resting
and moving drops of active liquids and study the influence of
the model parameters on their shape and velocity. From here
on we consider nondimensional quantities, employing scales
for which A = ha = η = γ = 1.

III. FILMS OF PASSIVE AND ACTIVE POLAR FLUIDS

A. Linear stability analysis of the flat film

We begin the analysis of flat homogeneous films of active
polar liquid with a linear stability analysis. The model pos-
sesses flat film solutions of arbitrary thickness h = h0 with
up to three distinct homogeneous polarization states P0 that
can be determined from the condition of a vanishing reactive
flux jR, i.e., ∂ fspo

∂ p = 0 [see Eqs. (17) and (20)]. The solutions
correspond to unpolarized films with P0 = 0 and to polarized
films with P0 = B h0 with B = ±√

1 − 2κ (h0) for film heights
with κ (h0) � 1/2 and approach a mean polarization of P0 ≈
±h0 for thick films with h0 � ha. The linear stability of
the flat homogeneous films is determined by inserting the
harmonic ansatz,

h(x) = h0 + εh1eikx+λt , (21)

P(x) = P0 + εP1eikx+λt , (22)

into the evolution Eqs. (18) and (19), linearizing in ε � 1, and
solving the resulting eigenvalue problem. The two branches
of the dispersion relation for the unpolarized flat film with

FIG. 3. Dispersion relations for homogeneous (a) unpolarized
(h0, P0 = 0) and (b) polarized (h0, P0 = Bh0 ) flat films of height
h0 = 10. Note that the eigenvalues λP,i are complex for the polarized
film with imaginary part −iα0k. The remaining parameters are csp2 =
csp = 0.01, A = 1, M = 1, ha = 1, η = 1, γ = 1, cp = 2, QNC = 1,
ca = 0.01, and α0 = 0.001.

(h, P) = (h0, 0) are given by

λNP,1(k) = − h3
0γ

3η
k4 +

[
1 − 2

(
ha

h0

)3
]

A

ηh0
k2,

λNP,2(k) = − Mcpk4 − 1

h0
[QNCcp − Mh0cspB2]k2

+ QNC
csp

h0
B2. (23)

The two eigenvalues are shown in Fig. 3(a) for a flat film of
height h0 = 10 and can easily be interpreted because the ef-
fects of film height and polarization decouple: The eigenvalue
λNP,1(k) corresponds to the dispersion relation of a thin film
of a simple, partially wetting liquid [48]. It exhibits a typical
long-wave instability of a conserved quantity with λNP,1(0) =
0. For film heights h0 >

3
√

2ha, there exists an unstable band
of wave numbers 0 � k � kc where kc = √−∂hh fw(h0), and
the fastest growing mode is at kh = kc/

√
2. The film tends to

dewet, leading to the formation of droplets [60]. In contrast,
the eigenvalue λNP,2(k) captures the influence of spontaneous
polarization which uniformly destabilizes the unpolarized film
as polarization is a nonconserved quantity. Above onset, i.e.,
for h2

0B2 < (QNCcp)/(Mcsp), there exists an unstable band of
wave numbers 0 � k � kc, whereby the fastest growing mode
is always at k = 0. The energetic costs of gradients in the
polarization [cp > 0 in Eq. (14)] thus result in a spatially
homogeneous polarization for flat films. Note that for cp → 0,
the eigenvalue λNP,2(k) diverges for large wave numbers k.
The elastic energy Eq. (14) is therefore a crucial ingredient to
provide a small scale cut-off of instabilities triggered by λNP,2

and is needed to avoid unphysical behavior. The eigenvalues
of the polarized flat film with (h, P) = (h0, Bh0) shown in
Fig. 3(b) are also obtained analytically, however, we do not
print the rather lengthy fully coupled expressions [plotted in
Fig. 3(b) for h0 = 10]. In the limit of thick films, (ha/h0)3 � 1
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FIG. 4. Direct time simulations of the dewetting dynamics of initially flat homogeneous films of height h0 = 10. Panels (a) and (b) give the
dynamics of a passive film (ca = 0, α0 = 0) for initially homogeneous polarized and unpolarized films, respectively. Panels (c) and (d) show the
cases with active stress and self-propulsion (ca = −0.01, α0 = 0.001) for initially homogeneous polarized and unpolarized films, respectively.
Shown are space-time plots of height profiles h(x, t ) (left) and polarization p(x, t ) (right) at equidistant times with colors varying from red at
early times to blue at late times. Note the different timescales of the dynamics in the four cases: The dewetting accelerates for films which are
already polarized, compared to unpolarized films. The gray-scale shading below the profiles are contour plots giving an alternative visualization
of the dynamics. The remaining parameters are as described in the caption of Fig. 3.

and they reduce to

λP,1(k) = − γ h0
3

3η
k4 + A

ηh0
k2 − iα0k,

λP,2(k) = − cp Mk4 − 2

(
Mcsp + QNC

h0
cp

)
k2

− QNC

h0
2 csp − iα0k. (24)

Both eigenvalues are now complex for α0 	= 0. The dewetting
instability is still present in λP,1(k) and is independent of the
polarization state of the film. The complex eigenvalues lead
here to exponentially growing dewetting waves. In contrast,
the eigenvalue λP,2(k) connected to the influence of polar-
ization has always a negative real part for the polarized flat
film. This reflects that the polarized state is already the one
favored by the spontaneous polarization energy fspo Eq. (12).
The analysis so far has shown that both, unpolarized and
polarized homogeneous flat films are linearly unstable for all
film heights h0 >

3
√

2ha.

B. Dewetting dynamics

We analyze the dewetting dynamics of flat homogeneous
films by performing direct numerical simulations for a sys-
tem of size � = [0, 600] discretized on an equidistant mesh
with Nx = 256 grid points and periodic boundary condi-
tions employing the finite element-based modular toolbox
DUNE-PDELAB [63,63]. Figure 4 shows examples of the dewet-
ting dynamics of initially flat films of height h0 = 10 with a
small random noise of amplitude a = 0.2. Space-time plots
consist of snapshots of film height and polarization profiles
at equidistant times. First we consider the passive case, i.e.,
without active stress (ca = 0) and self-propulsion (α0 = 0).
Figures 4(a) and 4(b) show the evolution of initially polarized
and unpolarized films, respectively. For the passive polar-
ized film in Fig. 4(a), as expected, a sinusoidal modulation
becomes visible at early times consistent with a spatially
periodic instability triggered by the eigenvalue λP,1. It grows
in amplitude, becomes less harmonic beyond the linear regime
until, eventually, a steady equilibrium droplet with uniform
polarization is approached. In the precursor film outside the
droplet the polarization vanishes. If the passive film is initially
unpolarized [Fig. 4(b)], then we observe the formation of
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domains of different orientation of the polarization, i.e., in
the present 1D case of different sign. Domains of opposite
polarization are separated by a domain wall (sometimes also
referred to as “kink”/“antikink” or “defect”). Due to the
coupling between polarization and film height, the strong
polarization gradient across a domain wall can induce a strong
flow that contributes to the modulation of the film height.
This coupling drastically accelerates the dewetting dynamics
as compared to the passive polarized case (by about one
order of magnitude). Here, at the end of the simulation of
the dewetting process, two steady droplets of opposite po-
larization are formed. The two droplets in Fig. 4(b) coarsen
into one droplet on a timescale of order 109 (not shown).
For other initial noise realizations, the early self-polarization
process can lead immediately to a homogeneously polarized
film (data not shown). In that case, dewetting takes place on
the same timescale as for the initially polarized passive film
shown in Fig. 4(a). The presence of active stress (ca = 0.01)
and self-propulsion (α0 = 0.001) modifies the dewetting and
coarsening dynamics as shown for initially polarized and
unpolarized films in Figs. 4(c) and 4(d), respectively. For the
active polarized film [Fig. 4(c)], due to the self-propulsion
the developing harmonic modulations in the film height travel
along the film surface consistent with the complex eigen-
values determined in the linear analysis. The modulations
grow, become fully nonlinear and the dynamics converges to
an active droplet with a uniform polarization moving with
constant shape and speed. For the initially unpolarized active
film shown in Fig. 4(d), the dynamics is more involved as it
reflects the existence of two unstable eigenvalues λNP,1(k) and
λNP,2(k). At first, on a short timescale the flat film polarizes
and domains of positive and negative polarization form. This
gives rise to counteracting flows in the film due to self-
propulsion. In consequence, dewetting is further accelerated
as compared to the corresponding passive case in Fig. 4(b).
Droplets with different orientation of the polarization form
and move in opposing directions. This drastically affects and
accelerates the coarsening process: The droplets coalesce until
only one large steadily moving drop of uniform polarization
remains. Interestingly, starting from other realizations of the
initial random noise, the same dewetting process may as well
result in droplets of nonuniform polarization, i.e., droplets
that contain domain walls. We investigate this phenomenon
in more depth in the next section. Note that the real parts
of the eigenvalues λP,1(k) and λNP,1(k) [Eqs. (23) and (24),
respectively] are identical for thick films ha/h0 � 1, i.e.,
the linear height mode is decoupled from the polarization
and the active stress has no influence. The self-propulsion
strength only affects the imaginary part of λP,1(k) for po-
larized films. For the parameters used in Fig. 4, the fastest
growing instability mode connected to spatial modulations in
the film height has in all considered cases a wave number
of kmax ≈ 0.012, i.e., a wavelength Lmax ≈ 513. Therefore,
the difference in the dewetting dynamics and resulting drop
number on the timescale of the simulations is not an effect
related to system size but results from a nonlinear coupling
between film height and polarization. In the following sec-
tion, we analyze moving and resting droplets in more de-
tail and study the effect of the active stress parameter ca

FIG. 5. Full time simulations of passive droplets (ca = 0 and
α0 = 0). Shown are simulation snapshots of height profiles h (top)
and mean polarization profiles p (bottom) at equidistant times of
(a) uniformly polarized and (b) nonuniformly polarized droplets
with identical parameter values. The simulations in panels (a) and
(b) are initiated with slightly different polarization patterns within
the droplet, given in Appendix A. (a) If the polarization profile
resulting from self-polarization is uniform within the droplet, then
the droplet’s height profile does not change compared to its initial
state. (b) If a nonuniform polarization profile with two domains of
opposite polarization results, then the drop profile becomes slightly
wider and lower. Due to symmetry, the height profile is not affected
by the transformation p → −p. The remaining parameters are as
described in the caption of Fig. 3.

and the self-propulsion speed α0 on the droplet shape and
dynamics.

IV. DROPS OF PASSIVE AND ACTIVE POLAR FLUID

For droplets consisting of active polar particles, self-
propulsion of the particles and active stresses modify the
fluxes within the droplet as compared to droplets consisting
of passive liquids. In consequence, the coupling between the
film height profile and the polarization field can be expected
to give rise to modified steady shapes and may induce active
motion of the droplets along the substrate. Here, we investi-
gate the drop behavior with direct time simulations employing
the finite-element based library oomph-lib [64] and with
continuation methods using the MATLAB toolbox pde2path
[67,68].

A. Stationary states and dynamics of passive drops

The previous section has shown that depending on the
initial conditions, the dewetting process can result in drops
with a single or several polarization domains. To better un-
derstand this phenomenon, we first analyze the existence
and stability of stationary states of passive polarized droplets
depending on the occurrence of domain walls. We initiate
the time simulations with the equilibrium drop shape of the
corresponding passive case (parabolic drop with a contact
angle corresponding to the equilibrium contact angle of the
nonpolar fluid) with an added small random polarization field
within the droplet. The specific initial conditions for the
polarization field are detailed in Appendix A. The resulting
evolution toward two qualitatively different types of passive
droplets is shown in Fig. 5. A uniformly polarized drop de-
velops in Fig. 5(a). An initial self-polarization stage starts by
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FIG. 6. Emergence of various passive states of polarized droplets from unpolarized passive droplet states. (a) shows the bifurcation diagram

(characterized by the L2-norm ‖p‖2 =
√

1
L

∫ L
0 p2dx of the mean polarization field p) depending on the parameter csp2 [cf. Eqs. (12)]. The

stability of each solution branch is indicated by “+” (unstable) and “−” (stable) signs in the respective colors. The black branch corresponds
to the unpolarized droplet. The blue branch corresponds to the uniformly polarized droplet and the red branch corresponds to the droplet
with two polarization domains of opposite polarization, i.e., with one domain wall. The the green and gray branches indicate nonuniformly
polarized droplets with two or more defects, respectively. Panels (b–e) show the film height and mean polarization profiles respectively, for the
specific value csp2 = 0.01 as indicated by the filled circles in panel (a). For comparison, the black dashed solutions show the height profile of
the unpolarized drop solution. Note, that by symmetry the polarization profiles with p(x) → −p(x) give identical height profiles. Remaining
parameters are as described in the caption of Fig. 5.

developing positive polarization in both contact line regions,
then extends into the entire drop, and reaches a rather uniform
plateau with p = 1 at the drop center. Across the contact line
region, the polarization decreases to |p| ≈ 0 smoothed by the
elastic energy fel Eq. (14) that penalizes strong gradients in p.
In the course of the process, the total polarization within the
droplet monotonically increases. In contrast, Fig. 5(b) shows
a scenario where the initial self-polarization stage starts with
the development of opposite polarization in the two contact
line regions. These then extend towards the drop center where
a domain wall develops that separates short plateaus with
p = 1 and p = −1. The resulting state after t = 105 is a
nonuniformly polarized drop with, in this case inward point-
ing, counteracting polarization. It is slightly lower and has a
slightly smaller contact angle than the initial drop, as depicted
in Fig. 5(b). Due to symmetry, the height profile is not affected
by the transformation p → −p, i.e., the additional possible
solutions with left pointing and outward pointing polarization
profiles, respectively, feature identical droplet profiles as in
Figs. 5(a) and 5(b). Note, that these simulations do not imply
the long-time stability of the depicted polarized drop states,
which will be investigated in the next step. To understand the
connection in parameter space of the different states observed
in the previous section and to analyze their stability, we apply
continuation methods using the MATLAB toolbox pde2path
[67,68].

Figure 6(a) shows a bifurcation diagram in terms of the
L2-norm (independent of system size L) and the spontaneous
polarization parameter csp2, which determines the amplitude
of the height averaged spontaneous polarization in the droplet

[see Eq. (12)]. Here, we chose csp2 = 0 as a starting point,
i.e., the disordered state [black solid branch in Fig. 6(a)]
is energetically favored and stable. When increasing csp2

towards csp2 = csp4 = csp = 0.01 [see Eq. (12)], first the po-
larized state p = 1 (by symmetry also p = −1) arise and gain
stability whereas the disordered state p = 0 becomes unstable
as indicated by the + signs corresponding to the number
of unstable eigenmodes. As csp2 increases, other unstable
branches bifurcate from the unpolarized droplet state. All
polarized states bifurcate supercritically from the unpolar-
ized branch, whereby the number of defects increases with
increasing csp2. The uniformly polarized drops, depicted for

FIG. 7. Long-time simulation of a passive drop that initially
contains two domains of opposite polarization (inward pointing).
At t ≈ 106 the polarization within the drop has become uniform.
Parameters are as described in the caption of Fig. 5.
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FIG. 8. Velocity of uniformly and nonuniformly polarized active droplets in dependence of the self-propulsion strength α0 > 0 in the case
without active stress (ca = 0).The bifurcation diagram in (a) depicts branches of moving and resting droplets, depending on the polarization
profiles within the droplet. Profiles are shown in (b–d) in corresponding colors. Stability is indicated by “+” (unstable) and “−” (stable) signs
in the respective colors. Note, that neither the uniformly nor the nonuniformly [two defects, panel (d)] polarized droplets move with exactly
v = α0 as indicated by the black dashed line in panel (a). Panels (b–d) show height (top) and polarization (bottom) profiles for α0 = 0.002
indicated by filled circles in panel (a). For steady droplets [one defect, panel (c)], the self-propulsion α0 breaks the symmetry w.r.t. the
transformation p → −p, resulting in a (small) differences in the droplet height profiles as exemplarily shown in panel (c) (solid vs. dashed
line). For moving droplets, the asymmetry of the height profile is most prominent in the contact line region and is not visible on the macroscopic
scale represented in panels (b) and (d). Remaining parameters are as described in the caption of Fig. 5.

csp2 = 0.01 in Fig. 6(b) are stable solutions. Due to the
successive destabilization of the unpolarized drops, the next
bifurcating branch, e.g., the red solid branch in Fig. 6(a) is
unstable and the steady states shown in Fig. 6(c) transform
over time into a uniformly polarized drop as proven by direct
time simulation. Figure 7 shows a simulation initiated using
the same conditions as for Fig. 5(c). However, the simulation
was carried out much longer. The nonuniformly polarized
droplet emerges and forms a long-time transient state. The
polarization pattern only changes into the stable uniformly
polarized drop with p = −1 after t ≈ 106. In comparison,
the transition from a disordered to a nonuniformly polar-
ized state takes place on a timescale of about t ≈ 105 [cf.
Figs. 5(a) and 5(b)]. The additional branches bifurcating from
the black branch in Fig. 6(a) correspond to nonuniformly
polarized drops with more than one domain wall. As exam-
ples, Figs. 6(d) and 6(e) show droplets containing two and
three domain walls, respectively. However, these branches
feature an increasing number of positive eigenvalues, thus are
increasingly unstable. Here, we do not consider them further
and focus on the behavior of uniformly polarized droplets
and droplets containing one domain wall. For comparison, the
unpolarized drop, i.e., p = 0, is represented in Figs. 6(b)–6(e)
as the black dashed lines, to indicate the changes in the height
profile.

B. Stability and dynamics of active polar drops

So far we have investigated the polarization states and
stability of passive droplets. Next, we focus on the in-
fluence of self-propulsion α0 on uniformly and nonuni-

formly polarized droplets. Thereby, the polarization p
becomes a polar order parameter, which breaks the par-
ity symmetry. Starting from the parameter settings indi-
cated by the filled circles in Fig. 6(a) we perform a
parameter continuation in α0. Figure 8(a) depicts the de-
pendence of drop velocity on self-propulsion strength α0

for droplets with various polarization states. We find that
the uniformly polarized droplets move for any α0 	= 0 into

FIG. 9. Long-time simulation of an initially nonuniformly polar-
ized droplet at self-propulsion strength α0 = 0.002 in the absence
of active stress (ca = 0). Shown are the evolution of (left) the
droplet height profile and (right) the polarization profile. Initially
the droplet is stationary and contains two polarization domains of
opposite polarization (inward pointing, zero net polarization). The
droplet starts to move to the left after a long transition time when the
net polarization is nonzero (negative). Remaining parameters are as
described in the caption of Fig. 8.
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FIG. 10. Dependence of droplet height and polarization profiles on the active stress parameter ca in the absence of self-propulsion (α0 = 0)
for uniformly and nonuniformly polarized droplets. All states are stationary. (a) shows the L2-norm of h, i.e., the droplet height deviating from
its mean value hm = 1

L

∫ L
0 h dx, depending on the active stress ca. The blue (red) solution branch corresponds to uniformly (nonuniformly)

polarized drops, and their stability is denoted by “+” and “−” signs, respectively. Panels (b) and (c) show the height (top) and polarization
(bottom) profiles of uniformly and nonuniformly polarized droplets, respectively, corresponding to the parameters indicated by the respectively
colored circles in panel (a). Due to symmetry with respect to the transformation p → −p, we only present one possible solution for each
solution branch. Remaining parameters are as described in the caption of Fig. 5.

their polarization direction, as expected. The speed increases
linearly with α0 and the height profile barely changes, for the
small values of α0 investigated.

For droplets containing two polarization domains, although
being stationary, increasing self-propulsion breaks the sym-
metry between the inward pointing [red solid line in Fig. 8(c)]
and outward pointing polarization profiles [red dashed line
in Fig. 8(c)], visible in the difference in the height profiles.
Due to their complete antisymmetric polarization profiles the
integral

∫
ph dx vanishes and the “net” polarization of the

droplet is zero: The droplets remain therefore at rest. Droplets
containing three polarization domains are moving [Fig. 8(d)],
albeit at lower speed than uniformly polarized drops. For the
shown polarization profile, the net polarization is positive.
Note, that the velocities of the moving states are not exactly
equal to the self-propulsion strength v = α0 and depend on
the polarization profile. Again, the uniformly polarized states
are stable and the nonuniformly polarized states are unstable,
which is confirmed by direct time simulations as shown in
Fig. 9. Starting from nonuniformly polarized droplets with
one defect, the polarization pattern changes after t ≈ 106

such that a uniformly polarized drop evolves which eventually
moves to the left with constant shape and velocity. For clarity,
we only show the dynamics for t > 8 × 105, as before height
and polarization profiles do nearly not change.

In a second line of investigation, we analyze the behavior
of polarized droplets when varying the active stress ca 	= 0
without self-propulsion (α0 = 0). To that end we perform
parameter continuations in ca taking the states from Figs. 6(b)
and 6(c) as starting points. We find that all polarized droplets
with active stresses are stationary. In Fig. 10 we present
the dependence of the drop and polarization profiles on the

magnitude of the active stress (contractile: ca < 0, extensile:
ca > 0) for different polarization states. Note, that the active
stress is only sensitive to the magnitude of the polariza-
tion, but not the direction, hence the polarization takes here
the role of a nematic order parameter and we can restrict
ourselves to the analysis of positively uniformly polarized
droplets [Fig. 10(b)] and inward pointing nonuniformly polar-
ized droplets [Fig. 10(c)]. The oppositely polarized states are
identical due to the nematic symmetry of the polarization field

FIG. 11. Schematic illustration of the effect of active stress on
nonuniformly polarized droplets. The shaded droplet represents the
droplet shape in the absence of active stress, whereas the blue solid
line represents the droplet shape with active stress. The polarization
profile is indicated as black dashed line close to the solid-liquid
interface. (a) Extensile stress: Both domains are pushing the fluid
outwards. However, due to the scaling ∼ − h3(∂x p2) of the active
flux, fluxes are stronger in the center of the droplet, than at its
periphery, which is denoted by the different sizes of the red arrows.
Due to mass conservation the droplet becomes narrower. (b) Con-
tractile stress: Each polarization domain attracts fluid. The strong
fluxes directed away from the droplet center cause a dip in the height
profile. Due to mass conservation the droplet becomes wider. Hence,
the competition between active stress and mass conservation plays a
crucial role for the drop shape.
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FIG. 12. Long-time simulation for an initially nonuniformly po-
larized droplet with active extensile (ca = 0.01) (a) and contractile
(ca = −0.01) (b) stresses in the absence of self-propulsion (α0 =
0). Shown are the height profile (left) and the polarization profile
(right). The transition from nonuniform to uniform polarization
is accompanied by a strong transient motion of the droplet. In a
frame moving with the droplet the domain wall moves towards the
shrinking domain (here, to the left). (a) For extensile stress, the
droplet (in the laboratory frame) moves into the same direction as
the domain wall (in the comoving frame), i.e., to the left. (b) For
contractile stress, the droplet (in the laboratory frame) moves into
the opposite direction as the domain wall (in the comoving frame),
i.e., to the right. The droplet stops when the transformation into a uni-
formly polarized droplet is complete at t ≈ 2.2 × 106 and 1.5 × 106,
respectively. Remaining parameters are as described in the caption of
Fig. 10.

vis-à-vis the active stress tensor. As expected, for extensile
stresses uniformly polarized drops become lower and wider
whereas for contractile active stresses they become higher and
narrower. However, nonuniformly polarized droplets show a
more interesting behavior due to the strong gradient across the
domain wall. The presence of two polarization domains within
one droplet of a conserved volume leads to the somewhat
paradoxical behavior, that droplets are wider in the presence
of contractile stresses than in the presence of extensile stresses
as shown in Fig. 10(c).

On the one hand, when the active stress is extensile, the
oppositely polarized domains push the fluid out, such that
the droplet becomes higher at the center [red solid line in
Fig. 10(c)]. Fluxes at the center of the droplet are stronger
than at its periphery. This is due to the highly nonlinear
h-dependence of the flux that is caused by the active stress
[cf. Eq. (20)]. In consequence, mass conservation causes the

FIG. 13. Sketch of the droplet behavior during the transition
from an unstable to a stable state characterized by a constantly
moving domain wall, whose position is indicated by a vertical gray
dashed line. The blue shaded drop profiles indicate (left) the initial
symmetric resting state and (right) a later transient moving state. The
black dashed lines indicate polarization profiles. (a) For extensile
stress, the fluid in both domains is pushed towards the domain wall.
As it moves off center, due to the local slope of the drop surface
the net fluid flux around the wall is in the direction of its motion.
Mass conservation implies that the entire drop moves into the same
direction in the laboratory frame. (b) For contractile stress, the fluid
is attracted into both domains resulting in a dip in the height profile
at the domain wall. However, as it moves off center, the net fluid flux
around the wall and therefore the droplet motion in the laboratory
frame is in the direction opposite to the motion of the domain wall in
the comoving frame.

droplet to become narrower, as fluid is more strongly attracted
toward the domain wall at the droplet center. This behavior is
sketched schematically in Fig. 11(a). The red arrows indicate
the direction and strength (scaled with the gradient in p) of
fluid flow for each domain.

On the other hand, for contractile stresses, the two polar-
ization domains compete to attract the fluid and the droplet’s
height profile develops a dip at the position of the domain wall
[black dashed line in Fig. 10(c)].

Overall, due to mass conservation, the droplet becomes
lower and wider as sketched in Fig. 11(b). Regarding the
stability, we find that the uniformly polarized droplets are al-
ways stable in contrast to the nonuniformly polarized droplets,
which are always unstable. The active stress does not influ-
ence stability in the given parameter range. Direct numerical
simulations show that in the long-time limit (t ≈ 106), the
polarization field for the unstable state transforms into a
uniform one, see Fig. 12. Interestingly, during the transient
phase, the droplets spontaneously move even though there is
no self-propulsion. In this transient, the droplets can cover
distances corresponding to multiples of their own size. In
the examples shown in Fig. 12 the droplet with extensile
active stress [Fig. 12(a)] moves about seven times its own
width while the droplet with contractile stress [Fig. 12(b)]
covers three to four times its own width. In any case, as
soon as the polarization profile becomes uniform the droplets
stop. Note, that the transition from an unstable nonuniformly
polarized into a stable uniformly polarized state takes more
time for extensile active stresses than for contractile stresses.
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FIG. 14. Dependence of the droplet shape and polarization profiles on the active stress parameter ca for uniformly and nonuniformly
polarized self-propelled (α0 = 0.002) droplets. (a) Bifurcation diagram showing the L2-norm of h for resting unstable (red and gray) and
moving stable (blue) active droplets. The red [gray] branch corresponds to inward [outward]-pointing polarized droplets. (b) Uniformly
polarized moving (indicated by arrow) droplets for extensile (blue solid) and contractile (black dashed) active stress, corresponding to the
stable states on the blue solid branch in panel (a) indicated by the respectively colored filled circles. (c) Nonuniformly inward (red and black)
and outward (gray) pointing polarized droplets for extensile (solid) and contractile (dashed) active stresses. The droplets correspond to the
respectively colored filled circles on the red and gray solution branch in panel (a). Due to symmetry breaking caused by self-propulsion, the
inward (red and black) and outward (gray) pointing solutions show different behavior when varying the active stress. Remaining parameters
are as described in the caption of Fig. 5.

The question remains, what triggers the extensive transient
droplet motion. During the transition from nonuniform to uni-
form polarization, the droplet undergoes a parity symmetry-
breaking: One of the two polarization domains grows, i.e., the
domain wall moves away from the droplet center. Because
of the broken symmetry, active stresses induce a net fluid
flux across the domain wall. Due to mass conservation this
net flux results in a motion of the droplet. It is accompanied
by an increase [decrease] in the contact angle at the droplet
edge in the direction of the fluid flux [opposite to it]. The
motion of the domain wall within the droplet and the motion
of the droplet itself continue until the polarization is uniform
throughout the droplet and parity-symmetry is restored. We
illustrate this phenomenon in Figs. 13(a) and 13(b) for exten-
sile and contractile stress, respectively. For extensile stress the
fluid in both domains is attracted towards the domain wall,
analogously to Fig. 11(a). However, as the wall moves off
center, due to the local slope of the drop surface, the net fluid
flux around the wall is in the direction of the wall’s motion.
Mass conservation implies that the entire drop moves into
the same direction. For contractile stress, the fluid in both
domains is pushed away from the domain wall resulting in
a dip in the height profile at the domain wall, analogously
to Fig. 11(b). The net fluid flux around the domain wall is
in the direction opposite to the motion of the wall in the
frame moving with the droplet. Therefore, in the laboratory
frame the droplet moves into the same direction as the net
fluid flux. Thus, in both cases the interplay between droplet
shape and the motion of a domain wall in polarization drives
a transient motion of the droplet. Interestingly, the origin of

motion lies in the relaxation of the polarization field which
ultimately eliminates domain walls and establishes a uniform
polarization. The nature of the active stress, contractile versus
extensile, determines the direction of the transient droplet

FIG. 15. Long-time simulation for an initially nonuniformly po-
larized droplet with active contractile stresses and self-propulsion,
i.e., ca = −0.01 and α0 = 0.002. Shown is the height profile (left)
and the polarization profile (right). Initially, the droplet contains one
domain wall between domains of inward pointing polarization and
a dip in the height profile rapidly develops. At time t ≈ 106 the
drop transforms from the nonuniformly polarized to the uniformly
polarized state (polarization into negative x direction, i.e., p = −1).
This transition is accompanied by a fast transient droplet motion
into the positive x direction. Eventually, the droplet starts to move to
the left, consistent with its net polarization direction. The remaining
parameters are as described in the caption of Fig. 14.
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FIG. 16. Strong active stresses and droplet splitting. (a) Bifurcation diagram showing the L2-norm of the film height h depending on the
active stress ca. All branches correspond to the same mean value hm. The black and red branch correspond to droplets with one and two
polarization domains, respectively. For comparison, the gray branch corresponds to a uniformly polarized droplet for L = 300, i.e., half the
size of the system corresponding to the black and red branch with L = 600. At high contractile stresses (ca < 0) a droplet with two polarization
domains splits into two smaller droplet, each uniformly polarized with opposite polarizations. The respective red dashed branch coincides with
the gray solid branch for ca > 0, i.e., the corresponding solutions are compositions of two single uniformly polarized droplets on each half of
the domain. The inset shows a saddle-node bifurcation at ca = csn

a , where the drop starts to split [see profiles in panels (d) and (e)]. We refrain
from indicating stability. Note, that the crossing of branches does not imply the solutions to be equal, but to correspond to the same ‖h‖2-norm.
Panels (b–f) show the different profiles in h and p corresponding to the parameters indicated by the respectively labeled black circles in panel
(a). The remaining parameters are as described in the caption of Fig. 10.

motion, relative to the domain wall motion within a comoving
frame. In the laboratory frame, for extensile active stress,
the domain wall moves faster than the droplet, whereas for
contractile active stress, the domain wall moves slower than
the droplet itself.

In a final step we analyze the steady states (stationary in
the laboratory frame or stationary in the co-moving frame) of
active droplets in the presence of self-propulsion (sensitive to
polar order) and active stresses (sensitive to nematic order). To
this end we use again parameter continuation: Starting from
the self-propelled solutions marked in Fig. 8(a) by the filled
circles we increase the active stress and obtain the bifurcation
diagram shown in Fig. 14(a) for moving stable (blue line)
and resting unstable (red and gray lines) active droplets. For
uniformly polarized droplets moving with constant shape and
velocity, the addition of active stresses has only minor ef-
fects on drop shape and velocity. For nonuniformly polarized
droplets containing one domain wall, the picture is more

differentiated. Self-propulsion breaks their symmetry, as it
locally stretches the droplet with outward pointing polariza-
tion [gray profile in Fig. 14(c)], whereas it contracts drops
with inward pointing polarization [red and black profiles in
Fig. 14(c)]. Therefore, active stress has a different impact
in the inward and outward pointing cases. Stability does not
change, namely, nonuniformly [uniformly] polarized states
are still unstable [stable] in the considered parameter range.
Fig. 15 shows a direct time simulation with parameters indi-
cated by the black filled circle on the red branch in Fig. 14(a).
Initially, the droplet contains one central domain wall between
domains with inward pointing polarization. The active stress
is contractile, i.e., the initial drop profile contains a small dip
at the center where the domain wall is located. The simulation
shown in Fig. 15 demonstrates that the unstable states are
long-time transients as a steadily moving droplet arises at
t ≈ 106. The transition occurs via the growth of the domain
of negative polarization, i.e., the domain wall moves to the
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left within the droplet. When, ultimately, the droplet is fully
negatively polarized it moves steadily to the left. However,
during the transition the droplet moves to the right, because
the active stress causes local fluid flows close to the off center
domain wall that push the droplet into the direction opposite to
the relative motion of the wall, as illustrated in Fig. 13(b). The
direction of motion reverses when self-propulsion dominates.
The transition occurs on the same timescale as for droplets
without self-propulsion (cf. Fig. 12), i.e., α0 = 0. Additional
time simulations with different initial conditions for the po-
larization field for extensile and contractile active stress at
otherwise identical parameters are provided in Appendix B.

C. Strong activity

Up to here we have focused on a parameter range of
relatively weak activity that is justified by estimates of activity
in specific biophysical systems (cf. Appendix C). However,
as it is also of interest how the droplet behavior changes
at strong activity and corresponding parameter ranges are
considered in the literature [57,58], we next explore this case.
In Fig. 16(a) we show as red line the bifurcation diagram
for strong active stresses for droplets with one defect in the
polarization profile.2 For large extensile active stress (ca > 0)
we observe a drastic change in the droplet shape as it becomes
more pointed and nearly doubles its maximum height, see the
profile in Fig. 16(b). Direct time simulations show that this
state survives for a long time (not shown). However, as this
does not necessarily imply overall stability we refrain from
indicating stabilities in Fig. 16(a).

For large contractile stresses (ca < 0) we observe an inter-
esting topological change in the drop shape as we follow the
curve across the saddle-node bifurcation at ca = csn

a focused
on in the inset of Fig. 16(a).

As one approaches the bifurcation on the solid red line
the small central depression in the drop profile [described
already at Fig. 10(c)] deepens [Fig. 16(d)] and then beyond
the bifurcation the structure starts to resemble two drops
of opposite uniform polarization [Fig. 16(e)]. Following the
red dashed branch towards larger ca the distance between
the two static split drops slightly increases and the drops
become wider and lower. Moreover, the bifurcation diagram
in Fig. 16(a) depicts the L2-norm for uniformly polarized
single droplets for system sizes L = 600 (black) and L = 300
(gray), respectively. For ca > 0 the red dashed branch closely
matches the L = 300 branch of single, uniformly polarized
drops [gray solid line, example profile in Fig. 16(f)]. This
reflects the fact that the L = 600 split solution resembles a
composition of two L = 300 drops of respectively uniform but
opposite polarization. For ca < 0 the distance between the two
drops decreases, hence the corresponding L2-norm slightly
deviates from the L2-norm representing the single droplet for

2Here, the red branch is obtained employing the continuation pack-
age auto07p, as we were not able to perform the continuation for
ca > 0.02 using pde2path due to finite size effects as we consider
large system sizes to obtain large drop heights as compared to the
precursor film. The results obtained for ca < 0.02 with pde2path

agree with the ones obtained with auto07p.

FIG. 17. Time simulation for an initially nonuniformly polarized
droplet [initial state identical to Fig. 6(c)] at active contractile stress
ca = −0.05. The drop splits and evolves into a two-droplet steady
state. Note, that this state is not equal to the one shown in Fig. 16(e)
as the two droplets do not touch each other. Shown are (left) the
height profile and (right) the polarization profile. The remaining
parameters are as described in the caption of Fig. 16.

L = 300. Performing a direct time simulation at csn
a < ca =

−0.05 starting with a nonuniformly inward pointing polarized
single drop [Fig. 6(c)] it spontaneously splits and develops
into a steady state consisting of two completely separated
droplets, as shown in Fig. 17. However, this solution does
not correspond to the state given in Fig. 16(e). Instead, the
two droplets are much further apart and the state resembles a
composition of two of the uniformly polarized states shown in
Fig. 16(f) (again of opposite polarization). In consequence, in
the course of the time evolution depicted in Fig. 17, the norm
approaches the value on the L = 300 branch3 in Fig. 16(a).
Finally, we investigate how strong active stresses affect self-
propelling uniformly polarized droplets using the moving
drop at self-propulsion strength α0 = 0.01 as reference state.
The resulting bifurcation diagram4 in dependence of ca in
terms of the L2-norm of h and the drop velocity v is shown in
Figs. 18(a) and 18(b), respectively. Large active stresses have
a strong impact on the shape and speed of the drop: Extensile
stresses tend to spread the droplet out [Fig. 18(d)] until
its edges reach the domain boundaries. Then a saddle-node
bifurcation occurs (at ca ≈ 0.45) that connects the droplet
states to a modulated film, i.e., a state of traveling waves
[Fig. 18(e)]. Following this branch back towards smaller
ca, the wave amplitude decreases (at approximately constant
speed) before it ends at ca ≈ −0.2 in a Hopf-bifurcation of the
flat film state (there ‖h‖2 = 0). This transition is accompanied
by a nonmonotonous change in the velocity: First, extensile
stresses make the droplet faster before the speed decreases
again. The surface waves have a speed of v ≈ α0. For large
contractile active stresses, the drop contracts [Fig. 18(c)] and

3As the interaction of the droplets exponentially weakens with
increasing drop distance, it depends on numerical details at which
exact distance the droplets stop.

4Again obtained employing auto07p, after having confirmed that
for ca < 0.1 all results are in good agreement with those obtained
with pde2path.
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FIG. 18. (a) Bifurcation diagram showing the L2-norm of h for a uniformly polarized droplet with strong self-propulsion α0 = 0.01. Panel
(b) depicts the velocity v depending on ca. For strong extensile stresses, we find a fold bifurcation to the polarized moving film solution, whereas
the velocity monotonically decreases for contractile stresses, where it may even become negative (see main text for details). The panels (c–e)
depict solution profiles indicated by the respectively colored circles in panels (a) and (b). The remaining parameters are as described in the
caption of Fig. 14(a).

its velocity decreases. This is illustrated in the time simulation
shown in Fig. 19. There, a droplet is initiated at α0 = 0.01
in the absence of active stress. It moves with speed v ≈ α0.
At t = 26 × 104 a contractile active stress ca = −0.25 is
switched on, which results in a fast contraction (increase in
the maximal height) and a marked slow down of the droplet.
For very strong contractile stresses, the velocity even becomes
negative, i.e., the droplet changes its direction of motion.
However, then the precursor film starts to polarize. As this is
unphysical we stop the continuation there and do not further
pursue the case of very large contractile active stresses.

FIG. 19. Time simulation for an initially uniformly polarized
droplet with self-propulsion strength α0 = 0.01 and without active
stress (ca = 0). At t = 26 × 104 an active contractile stress ca =
−0.25 is switched on inducing the droplet to contract and to move
slower. The remaining parameters are as described in the caption of
Fig. 16.

V. SUMMARY AND OUTLOOK

We have presented a generic phenomenological model for
free-surface thin films and shallow droplets of an active polar
liquid on solid substrates. It couples evolution equations for
the film height profile of the liquid and the local height-
integrated polarization. The model consists of a passive part
that forms a gradient dynamics on an underlying free-energy
functional and an active part that represents self-propulsion
and active stresses. Here, the energy incorporates simple
forms of capillarity, wettability, spontaneous polarization,
elastic energy of the polarization field and a coupling be-
tween the polarization and free-surface shape. We have shown
that the gradient dynamics form can be translated into the
usual hydrodynamic form of a thin-film model where the
pressure-gradient driven liquid flux is determined by Laplace
and Derjaguin (disjoining) pressure and elastic stress while
polarization is transported by the same flux and additionally
undergoes non-Fickean rotational and translational diffusion.
Although the model has not been derived via a long-wave
approximation from 3D bulk equations and appropriate
boundary conditions, it has a number of features that to our
knowledge no thin-film model in the literature combines:
(i) it is a fully dynamical model where height profile and
polarization field can freely develop; (ii) it fully accounts for
wettability and capillarity, allows for the motion of three-
phase contact lines, and dynamic contact angles; (iii) it ac-
counts for simple mechanisms of coupling between height and
polarization; and (iv) active stress and self-propulsion are both
included. In the future, the model can be extended and adapted
in a number of ways. So it is straight forward to incorporate
more complicated energies and energetic couplings as this

062802-15



TRINSCHEK, STEGEMERTEN, JOHN, AND THIELE PHYSICAL REVIEW E 101, 062802 (2020)

does not change the general form of the equations (see, for
example, the pertinent discussion for a surfactant-covered thin
liquid film in Ref. [70]). Also the active terms may be easily
adapted, e.g., incorporating the active stress term of Ref. [54].
Ideally, it would be possible to derive a closed model in the
form of two coupled partial differential equations, like the
one presented here, via a long-wave approximation for films
of active liquids as undertaken in Ref. [55]. There, however, it
was not possible to obtain such a closed form. After presenting
our full thin-film model for 3D droplets, i.e., on 2D substrates,
we have reduced the model to the description of 2D droplets
on 1D substrates (i.e., transversally invariant liquid ridges),
to allow for a first model analysis. Our study of this 1D
geometry has mainly focused on basic phenomena: We have
shown that the dewetting dynamics of a flat film of polar
liquid is not solely determined by passive wetting forces, but
also by the polarization field and activity. In addition to the
dewetting dynamics, the model is able to describe moving and
resting drops of active liquids, with uniform and nonuniform
polarization profiles. A parameter continuation has identified
nonuniformly polarized solutions as linearly unstable. How-
ever, depending on the initial conditions they appear as long-
lived transient states on the pathway to uniformly polarized
droplets. This occurs in both, passive and active systems.
During the transition phase, droplets start to move due to an
interesting interplay of mass conservation and active stress.
We have also briefly explored the behavior of droplets over a
larger range of active stresses. We have shown that strong con-
tractile active stresses may result in drop splitting similar to
morphological changes observed in 2D simulations of active
nematics in Ref. [41], and have provided a first insight into the
underlying bifurcation structure. Moreover, we have shown
that strong contractile active stresses slow down the motion
of self-propelled drops. Strong extensile stresses also result in
modulation of drop speeds and, ultimately, finite size effects
result in a saddle-node bifurcation that connects the polarized
moving drop state with traveling surface waves similar to the
waves in thin films of living fluids described in Ref. [52].

Finally, we highlight specific features of the present model
in comparison to literature models describing free surface
droplets of active liquids on smooth solid substrates: The
phase-field description of Ref. [45] is a generalization of
model-H [46] for active liquids where the active driving is re-
stricted to a finite thickness layer close to the substrate (in their
quasi-2D simulations further restricted to the advancing part
of the active drop). Otherwise, they consider similar physical
ingredients in a full 2D/3D setting and provide full simulation
results. In contrast, here we employ a thin-film description of
reduced dimension to provide such simulation results and to
track relevant states in parameter space to determine bifur-
cation diagrams. Our model is a precursor film model that
naturally incorporates a wetting energy while in Ref. [45]
seemingly a 90 degree equilibrium contact angle of the active
phase with the substrate is imposed via a boundary condition.
In our case, self-propulsion is not confined to a finite layer. In
the case of a (quasi-)1D substrate, both models yield motile
droplets with velocities close to the self-propulsion strength
that are amended by additional active stresses. As expected, in
the considered 1D case we have not observed steady droplet
motion due to active stresses only, but could describe drop

splitting not discussed in Ref. [45]. A detailed analysis of the
presented model for a full 3D geometry, i.e., for 2D substrates,
as done for the active model-H in Ref. [45] represents an
important future challenge. Additionally, next to effects de-
scribed here, one could then expect a spontaneous symmetry
breaking to occur that results in a splay-induced motility in
the presence of active stress (but without self-propulsion) as
observed in Refs. [38–41,45].

Note that in our model one may as in Ref. [45] restrict
active driving to a finite thickness layer close to the substrate,
e.g., using a Hill function with exponent two for the height
dependence in the self-propulsion term in Eq. (20). Then one
can observe steadily moving drops with a forward protrusion
(not shown) as observed in layers of epithelial cells [15]. The
dynamical transition between moving drops with and without
such a protrusion can have a continuous or discontinuous
character as also seen in Ref. [45] in dependence of the
employed slip strength. A thin-film model derived in the
recent [58] obtains a self-propulsion term that exponentially
decays with increasing film height which also results in a
forward protrusion. In the thin-film active droplet model
proposed in Ref. [53], nematic elasticity and active stresses
are incorporated. It is used to determine steady fully spread
shapes with zero microscopic contact angle as well as the
scaling law of spreading dominated by active stresses alone.
A microscopic contact angle different from zero can only be
imposed in the case without elasticity and is independent of
the active stress that only influences the drop profile away
from the substrate. In the given version, contact lines would
only be able to move if slip were incorporated. In contrast,
our thin-film model with a wetting energy accounting for
partial wettability directly allows for fully dynamic consider-
ations of, e.g., film dewetting, drop spreading, activity-driven
surface waves. We have included elasticity resulting from
polarization gradients parallel to the substrate, not considered
in Ref. [53], but do not incorporate vertical contributions,
i.e., consider a regime of very weak anchoring at the free
surface. A very recent thin-film model for a droplet of active
nematics [57] (further investigated beside other models in
Ref. [58]) considers the case of strong anchoring parallel at
the substrate and perpendicular at the free surface. Assuming
a strong elastic limit, the relaxation of the director field is very
fast, adiabatically enslaving it to the film height profile. In
consequence, a single thin-film evolution equation is derived
where active stresses result in a directed driving term similar
to the one obtained for a constant imposed shear stress, e.g.,
a Marangoni stress due to an imposed temperature gradient.
Self-propulsion is not considered. Note that the considered
director profile strongly differs from the one resulting for
the strong parallel anchoring considered in Ref. [53] or the
very weak anchoring considered here. The calculations in
the 1D case in Ref. [57] show that the drops move for any
active stress and show shape transformations from spherical
cap-like drops via drops with a backwards shoulder to long
flat drops with a capillary ridge at the front very similar to
transitions described for 1D drops driven by a body force [71].
Similar strong shape transformations related to the emergence
of a backward protrusion can be obtained with our model
if the self-propulsion term in Eq. (20) is chosen to depend
quadratically on film height (not shown). It is a task for the
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future to develop an active liquid thin-film model that is able
to capture all three anchoring modes individually considered
in Refs. [53,57] and the present work.

The data that support the findings of this study are openly
available [73].
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APPENDIX A: INITIAL CONDITIONS FOR
DROPLET SIMULATIONS

For all direct numerical simulations of passive and active
single droplets we use the initial conditions

h(x) = max
(
hmax − a

(
x − Lx

2

)2
, 1

)
,

P(x) = 0.01 rand(Nx ) h(x)−1
hmax

Sym(x),

with hmax = 50, Lx = 600,

and a = 3
20

A
hmax−1 , (A1)

where rand(Nx ) corresponds to a 1D array of random float
numbers from the half-open interval [0.0,1.0). The function
Sym(x) can be used to impose a slight asymmetry with
respect to parity (x → −x). Specifically, we use Sym(x) =
1 to induce droplets with uniform polarization, Sym(x) =
sin (2π x

Lx
) to induce drops with nonuniform inward polar-

ization, and Sym(x) = sin (−2π x
Lx

) for nonuniform outward
polarization. This corresponds to the scenarios shown in
Figs. 5(a)–5(c).

APPENDIX B: FURTHER TIME SIMULATION
FOR ACTIVE DROPLETS

For completeness we show here time simulations for self-
propelled (α0 = 0.002) nonuniformly polarized droplets un-
der active stress [Fig. 20]. The parameters are identical to the
parameters used for the simulations in Fig. 15, except for the
nature of the active stress, i.e., contractile versus extensile,
or the initial polarization profile, i.e., inward versus outward
pointing polarization.

APPENDIX C: PARAMETER ESTIMATE

For a water droplet with surface tension γ = 70 mN m−1

and viscosity η = 1 mPa s containing a high concentration
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(b) extensile stress
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(c) contractile stress
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FIG. 20. Long-time simulation for an initially nonuniformly po-
larized droplet with active (a, b) extensile (ca = 0.01) and (c) con-
tractile (ca = −0.01) stresses and self-propulsion (α0 = 0.002).
Shown is (left) the height profile and (right) the polarization profile.
The transient droplet motion is caused by the moving domain wall
in the polarization which either moves into the same (extensile)
or into the opposite (contractile) direction in the laboratory than
in the comoving frame. (a) A drop with initially inward pointing
polarization eventually evolves into a uniformly polarized droplet
(p = −1) moving to the left. Panels (b) and (c) show that drops
with initially outward pointing polarization eventually evolve into
uniformly polarized droplets (p = 1) moving to the right. Note that
during the transient they move into different directions. Remaining
parameters are as described in the caption of Fig. 10.

of self-propelled particles (e.g., swimming bacteria or tread-
milling filaments with a typical swimming/treadmilling
speed of α0 ∼ 1–100 μm s−1) we find the dimensionless
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self-propulsion parameter

α̃0 = α0η
√

γ

(
h2

a

A

)3/2

= α0η

γ

1[
3

10 (1 − cos θ0)
]3/2 , (C1)

where θ0 denotes the equilibrium contact angle of the passive
unpolarized droplet, which is related to the wetting energy
at the precursor film thickness fw(ha) via the well-known
relation cos θ0 = γ+ fw(ha )

γ
(see, e.g., Ref. [72]). Using a small

contact angle of 5 ◦ gives values for ã0 of about 10−5 . . . 10−3,
which is well below the range of α̃0 which we have investi-
gated (Fig. 8). For the nondimensional active stress parameter

c̃a we find

c̃a = cah3
a

A
= caha

γ

1[
3

10 (1 − cos θ0)
]1/2 . (C2)

Assuming a precursor film thickness of ha = 1 nm and an
active stress comparable to the elastic modulus of Arp2/3
cross-linked actin networks of ca = 1 kPa [74] we find the
nondimensional active stress of c̃a = 0.001 which is also
below our tested parameter range (see Figs. 10 and 14).
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