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a b s t r a c t

We discuss the usage of ratchet mechanisms to transport a continuous phase in several micro-fluidic set-
tings. In particular, we study the transport of a dielectric liquid in a heterogeneous ratchet capacitor that
is periodically switched on and off. The second system consists of drops on a solid substrate that are
transported by different types of harmonic substrate vibrations. We argue that the latter can be seen
as a self-ratcheting process and discuss analogies between the employed class of thin film equations
and Fokker–Planck equations for transport of discrete objects in a ‘particle ratchet’.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Most of the many studied ratchet mechanisms are discussed in
the context of directed transport and filtering of discrete objects as,
e.g., colloids or macromolecules [1]. Examples include colloidal
particles, that move in a directed manner through an array of peri-
odic asymmetric micropores when under the influence of an oscil-
lating external pressure [2]. Such particles may as well be driven
by a dielectric potential of sawtooth shape that is switched on
and off periodically [3]. In many of these ‘discrete’ ratchets the car-
rier fluid (or solvent) does not or nearly not move on average, i.e.,
they cannot be employed to transport a continuous phase. One
exception is the motion of magnetic particles in ferrofluids under
the influence of an oscillating magnetic field [4]. There the result-
ing net motion of the particles is transmitted to the carrier liquid
by a strong viscous coupling.

However, the basic concept of ratchet transport – that a locally
asymmetric but globally homogeneous system may induce global
transport if it is kept out of equilibrium [5] – applies equally well
to pure continuous media. This has been employed recently to
transport a liquid or a solid phase in settings that do not show
any macroscopic gradient [6–8]. The local asymmetry can result,
for instance, from a periodic but asymmetric external potential.
The periodic asymmetric variation needs to be on a small length
scale compared to the system size.
ll rights reserved.
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In a first example, drops that are either placed on an asymmet-
rically structured substrate or between two such substrates move
on average if a transverse electric field is applied periodically [8].
A similar transport may be achieved by vibrating the structured
substrate in a tangential direction [8]. A second example is the trig-
gering of a large scale mean flow in Marangoni–Bénard convection
over a solid substrate with asymmetric grooves [6]. That is an
interesting example (that has not yet been studied in detail theo-
retically) as the static ratchet profile of the substrate interacts with
the time-periodic motion of the convection rolls to produce the
mean flow, i.e., the time-periodic ‘switching’ is done by the system
itself. The strength and direction of the mean flow depend on the
thickness of the liquid layer and the applied temperature gradient
across the layer. A third example are Leidenfrost drops that are
placed on a hot surface with a ratchet-like topography. This in-
duces a directed motion of the drops [7,9]. The effect is not only ob-
served for many liquids but as well for small blocks of dry ice [10].

In contrast to the case of particle ratchets, not many models ex-
ist for the ratchet-driven transport of a continuous phase. Ref. [11]
considers a channel flow that is induced by locally asymmetric
periodic arrays of electrodes under an AC voltage [12], and pro-
poses an electro-osmotic model.

A different concept was analysed in relation to the first experi-
mental example: a two-layer film confined between two parallel
plates can be driven by periodically switching on and off an exter-
nal potential that is of ratchet shape in space. In the case that the
potential is an electrical one and the two plates form a (heteroge-
neous) capacitor one may call the setup a flashing ‘(electro-) wet-
tability ratchet’ [13,14]. The concept of wettability may be
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understood in a rather general way as it may include any effective
interactions between the liquid–liquid free interface and the solid
walls as long as one is able to apply them in a time-periodic, spa-
tially periodic (but locally asymmetric) manner.

Net transport of a continuous phase may not only be caused by
an external ratchet potential, but also by a self-ratcheting effect:
An enlightening example are drops that are driven up an incline
by harmonic substrate vibrations at a finite angle to the substrate
normal [15,16]. A simple ratchet-like mechanism has been pro-
posed [17]: The vibration component that is orthogonal to the sub-
strate strongly modulates the hydrostatic pressure and thereby
induces a nonlinear response in the drop shape. That in turn deter-
mines the strongly nonlinear drop mobility. As a result the drop re-
acts in an asymmetric manner to the vibration component parallel
to the substrate. This symmetry breaking between back and forth
motion leads to the observed net motion of the drop. A second
experiment does not employ an oblique vibration but decouples
the normal and parallel vibrations entirely [18]. On a horizontal
substrate a net transport may be induced in either direction
depending on the phase shift and amplitude ratio of the two har-
monic vibrations. Note, that in Ref. [18] both vibrations have the
same frequency. In both vibration experiments the phenomenon
might be seen as a rocked self-ratcheting [1] of the drop as it is
the drop itself that introduces the local time-reflection asymmetry
in the response to the time-periodic driving of the sliding motion.

The decisive element in both presented systems – the ratchet
capacitor and the vibrated drop – is the interaction of the external
periodic forces with capillarity and wettability. With other words
the nonlinearity that is necessary for a net motion results from
interface effects. We propose to call this class of ratchets, ‘interfa-
cial flow driven ratchets’. As the resulting mean flow results from
nonlinear interface effects they may become more effective the
smaller the involved scales are. This implies that they are good
candidates for micro- or even nano-fluidic actuators.

In the present contribution we will restrict our attention to one-
layer films (i.e., liquid under gas) and formulate the thin film model
that applies to both driving types – an external ratchet potential
and the vibration (Section 2). Then we present selected results
for the external electrical ratchet potential in Section 3. Section 4
discusses drop transport by an oblique vibration of the substrate
(cf. [15]), whereas Section 5 describes results for the recently
investigated case where the drop moves as a reaction to a phase
shift between decoupled horizontal and vertical vibrations [18]. Fi-
nally, we conclude and give an outlook in Section 6.
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Fig. 1. (a) Sketch of a film of dielectric liquid of thickness h(x) in a capacitor of gap
width d and voltage U(x, t). The relative dielectric constants of the liquid and air are
eliq and eair, respectively. (b) Sketch of a drop on a vibrating inclined substrate. The
frequency and angle of the vibration with the substrate normal are x and b,
respectively. The inclination angle of the substrate is a.
2. Long-wave film profile evolution equation

We restrict our attention to a two-dimensional system and con-
sider films/drops on lengthscales in the micrometer range. The
behaviour is then controlled by the interplay of the time-periodic
external force (and its spatial modulation), wettability and capil-
larity. In the limit of small surface slopes (small contact angles) it
can be well described using an evolution equation for the film
thickness profile h(x, t) that is derived from the momentum trans-
port equations with adequate boundary conditions employing
long-wave approximation [19,20]. In dimensionless form we find

@th ¼ �@xfQðhÞ@x½@xxhþ Pðh; x; tÞ� þ QðhÞFðtÞg: ð1Þ

As mass is conserved (no evaporation is considered), the time deriv-
ative of the film thickness profile equals the divergence of a flow.
The flow results from a pressure gradient and a lateral force and
is proportional to a mobility Q(h). The pressure contains the Laplace
or curvature pressure and a term P(h,x, t) that stands for all other
pressure contributions as, e.g., disjoining pressure (wettability),
hydrostatic pressure, electrostatic pressure and so on. The pressure
P might depend on position and time. The lateral driving force F
may include gravity (drop on incline), thermal or wettability gradi-
ents and other. Depending on the particular effect included it might
as well depend on h.

We are here particularly interested in three cases:

(i) For a liquid film in an external electrical ratchet potential on
a horizontal substrate one has
Pðh; x; tÞ ¼ PvdWðhÞ þXðtÞUðxÞPelðhÞ ð2Þ

and F = 0. The disjoining pressure PvdW comprises the effec-
tive interactions between the liquid–gas interface and the
substrate, i.e., the wettability properties [21,22,19]. We as-
sume that a dielectric oil forms a film in a capacitor of gap
width d. The oil wets the lower plate and does not wet the
upper plate corresponding to

PvdW ¼
Al

h3 þ
Au

ð1� hÞ3

 !
ð3Þ

with the dimensionless Hamaker constants Al > 0 and Au < 0.
The dielectric film is subject to an electrical ‘disjoining’ pres-
sure [23,24]

Pel ¼
ðer � 1Þ

½er þ ð1� erÞh�2
ð4Þ

that varies in space as described by U(x) and is periodically
switched in time as X(t). In Eq. (4), er denotes the ratio of
the relative dielectric constants of the liquid, eliq, and the
gas phase, eair. The function U(x) models an electric field that
is periodic in x, but with an asymmetric profile, i.e., there ex-
ists no reflection-symmetry in x. The employed spatial varia-
tion U(x) and the temporal modulation X(t) are defined by
the sketches in Fig. 2(d) and (e), respectively.
The introduced scales are 3cg=dj2

el;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cd=jel

p
, and d for time t,

position x, and film thickness h, respectively. Thereby,
we have defined an electrostatic ‘spreading coefficient’
jel = e0eliqU2/2d2 where e0 is the absolute dielectric constant
and U is the applied voltage. c and g denote surface tension
and dynamic viscosity of the liquid, respectively.
For simplicity we assume Al = �Au = A > 0. The dimensionless
Hamaker constant A is related to the dimensional one by
A = Adim/6 pd3jel. To characterise the ratchet we introduce
the flashing ratio v = s/(T � s) and the asymmetry ratio
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Fig. 2. Panels (a)–(c) illustrate the working principle of a fluidic ratchet based on a
switchable wettability that causes dewetting-spreading cycles. (d) illustrates the
spatially asymmetric periodic interaction profile U(x) responsible for the wettabil-
ity pattern and (e) indicates the time-dependence X(t) of the switching in relation
to the dewetting and spreading phases in (a)–(c).
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/ = k/(L � k). The flashing frequency is x = 2p/T. The net
transport along the substrate is measured by the mean flow
hji. For more details see [13,14].
(ii) In the second example we look at drop transport by an obli-
que vibration that determines both, P and F [17]. The
pressure
Pðh; x; tÞ ¼ PðhÞ � Gh½1þ aðtÞ� ð5Þ

contains the disjoining pressure P(h) = �1/h3 + 1/h6 and the
hydrostatic pressure where the time-dependence results
from the vibration component normal to the substrate. P
contains long-range destabilising and short-range stabilising
van der Waals interactions [25]. The lateral force

F ¼ G½aþ bbðtÞ� ð6Þ

contains a constant part (force down the incline) and a time-
modulated part (vibration component parallel to the sub-
strate). For a harmonic oblique vibration, the substrate accel-
eration is a(t) = b(t) = a0 sin(xt). Note, that the physical
vibration angle is O(heb) where he is the mesoscopic equilib-
rium contact angle, i.e., a scaled angle b of order one corre-
sponds to a small physical angle.
In this case, the introduced scales are 3cg=h0j2;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ch0=j

p
,

and h0 = (B/jAj)1/3 for time t, position x, and thickness h,
respectively. A < 0 and B > 0 are the Hamaker constants for
the long- and the short-range part of the disjoining pressure,
respectively. Furthermore, j ¼ jAj=6ph3

0, and G = qgh0/j,
where q denotes the density of the liquid and g the gravita-
tional acceleration. The non-dimensional vibration period is
T = 2p/x. The fixed drop volume V ¼ Lð�h� hpÞ is determined
by the domain size L, the mean film thickness �h and the
dimensionless precursor film thickness hp = 1. The resulting
transport along the substrate is measured after all transients
have decayed and the vibration-induced shape changes of the
drop are completely periodic in time. We quantify the trans-
port by the mean drop velocity hvi = Dx/T where Dx denotes
the distance the drop moves within one period T.
(iii) The final example is closely related to the second one. In the
experiments of Ref. [18] the normal and lateral substrate
vibrations are mechanically decoupled and may have differ-
ent amplitudes, frequencies and phases, i.e., the normal
vibration in Eq. (5) is a(t) = a0 sin(xat + d), and the lateral
one in Eq. (6) is bb(t) = ba0 sin(xbt). In the particular case
of [18], a horizontal substrate is used, i.e., a = 0 and
xb = xa = x. The parameter b takes the role of the ratio of
the vibration amplitudes in the directions parallel and nor-
mal to the substrate. To be consistent with the long-wave
approach taken, the physical amplitude ratio has to be small.
However, as in (ii) b is the scaled ratio and therefore of O(1).

3. Flow in a ratchet capacitor

Fig. 2 sketches an idealised electrical wettability ratchet. The
working principle is as follows. The flat free surface of a film of a
dielectric liquid that wets the lower wall of the capacitor is stable
when the electric field is switched off (Fig. 2(a)). When switching
on the spatially inhomogeneous electric field at t = 0 (see spatial
profile and time-dependence in Fig. 2(d) and (e), respectively) the
film dewets the substrate and decays into a set of drops (we call this
the ‘on-phase’). This is due to a destabilisation of the surface by the
overall electric field and its gradients parallel to the substrate
(Fig. 2(d)). The latter interfere with the wavelength selection in
the linear phase of the surface instability. They do as well accelerate
the coarsening process. The different processes during the on-phase
can be well appreciated in Fig. 3. The qualitative behaviour in the
on-phase of the cycle resembles dewetting of a liquid film on a sub-
strate with a chemical wettability pattern [26,27]. If the on-phase is
long enough (as is the case in Fig. 3) all the liquid collects in drops
close to the positions of the maximal voltage (Fig. 2(b)). Then the
field is switched off (‘off-phase’) at t = s (Fig. 2(e)) and the drops
spread (Fig. 2(c)), merge and become a homogeneous film again
(Fig. 2(a)). The next cycle starts at t = T. If the period of the cycle is
not large enough, the surface may not become entirely flat, a small
modulation remains as indicated in Fig. 2(c).

When initially switching on the device there are several cycles
(typically�5–50, the number varies with the employed parameters)
that show transient behaviour. However, the initial transients die
out and the evolution of the film profile during one cycle is exactly
time-periodic. Note, that there exist small parameter ranges where
this is not the case due to resonance phenomena and/or multistabil-
ity of various film states. However, this shall not concern us here.

Although the evolution of the film profile is exactly time-peri-
odic, the process re-distributes the liquid within the film. This re-
sults in a net transport that depends in a non-trivial way on the
various control parameters. As an example we give in Fig. 4 a
log–log plot of the dependence of the mean flux on the flashing fre-
quency. For the used flashing ratio and ratchet geometry the flux is
always positive and approaches zero in the zero frequency limit as
well as in the high frequency limit. For large frequencies the fluid
does not have enough time to dewet in the on-phase or to spread
in the off-phase. At small frequencies both processes reach the
respective equilibrium well before the next switching, i.e., most
time is spend waiting. As a result the mean flow increases propor-
tionally with frequency when increasing the frequency from zero
(cf. Fig. 4). The flux reaches a maximum at x = 10�3–10�2 before
it decreases again. The decrease seems to follow a power law as
well. It is, however, not universal: the exponent increases with
increasing mean film thickness. The decaying part shows non-
monotonic step-like behaviour that is more pronounced for smal-
ler film thicknesses. This results from that fact that films of smaller
thicknesses dewet in a homogeneous electric field with a wave-
length well below the spatial period of the ratchet. The more wave-
lengths fit into a ratchet period the more coarsening steps can take
place in the on-phase if the frequency is small enough. Each of the
‘steps’ in the curves of Fig. 4 is related to a coarsening step that
does not take place above the frequency at the step. At smaller
mean film thicknesses the maximum resembles a plateau with a
flux that does nearly not change between x = 10�3 and 10�2. The
maximal flux increases with increasing mean film thickness. The
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particularly interesting non-monotonic behaviour close to the flow
maximum (here well visible for �h ¼ 0:5) results from the interac-
tion of the dynamics of the ‘last’ coarsening step and the switching
cycle.

Second, Fig. 5 shows the dependence of the mean flux on the
flashing ratio. When it is low, i.e., the ratchet is most of the time
in the off-phase, the flux is very low. This is because the liquid re-
mains nearly homogeneously spread out as it has no time to
assemble at the points of maximal voltage. By increasing the time
of the on-phase the flux increases in a non-trivial manner until it
reaches a maximum at v � 1. Depending on the film thickness
one may find almost a plateau, i.e., a range of flashing ratios with
nearly constant flux. For high flashing ratios the flux decreases
again, since the ratchet is most of the time in the on-phase. That
implies electrically formed drops have not enough time to spread
out. The decrease follows a power law with an exponent of about
�4/3.

Further calculations (not shown) indicate that the mean flux in-
creases monotonically with increasing spatial asymmetry ratio /
and the amplitude W of the ratchet potential. Note that as expected
the net transport is zero at / = 1, i.e., for a symmetric potential. For
further results for the presented one-layer geometry, see Refs.
[13,14]. Exchanging the air layer by a second dielectric liquid,
one is able to transport the two liquids into opposite direction.
There, depending on the ratios of the viscosities and relative dielec-
tric constants one may as well find a flux reversal. This is further
discussed in Ref. [14]. With this we close our present discussion
of case (i), i.e., the study of the transport of a dielectric liquid by
a ratchet capacitor. Our results are typical for many externally im-
posed ratchets. The two cases discussed next are both related to
net transport through substrate vibrations. Note that they can be
seen as ‘intrinsic’ or self-inflicted ratchets.
4. Drop transport by oblique substrate vibration

As the first case of vibration-induced transport we discuss case
(ii) introduced in Section 2 – a drop transported by an oblique sub-
strate vibration as sketched in Fig. 1(b) and experimentally ob-
served in Ref. [15]. The present results extend the ones of Ref.
[17]. The typical behaviour of a drop during one vibration cycle
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as obtained in a time simulation of Eq. (1) is given in Fig. 6. One ob-
serves that the drop undergoes changes of shape and moves back
and forth. Such simulations in time may be employed to analyse
the net transport over a wide frequency range. In addition one
may use continuation techniques [28–30] to study the behaviour
in the low frequency limit, i.e., for a slowly vibrating substrate. In
this limit the intrinsic timescale of the drop dynamics t0 is much
smaller than the vibration period T and the drop moves in a qua-
si-stationary manner. This means that drop shape and velocity at
each instant during the vibration cycle correspond to the ones of
a stationary moving drop at the corresponding constant force. They
are parametrized by a(t). Averaging stationary drop velocities
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this article.)
v(a(t)) over one vibration period gives the low frequency limit
of hvi.

Fig. 7 presents results for the low frequency limit. Panel (a)
shows profiles of stationary moving drops at various phases of
the cycle on a horizontal substrate. Panels (b) and (c) give drop
velocity and the dynamic mesoscopic contact angles, respectively,
over one vibration cycle. The angles are shown for the left (hl) and
right (hr) contact line. In the given setup, temporal modulations of
the right contact angle are larger than those of the left one. The
deviation of the velocity of the sliding drop from a harmonic mod-
ulation (dotted line in Fig. 7(b)) is a measure of the net motion of
the drop.

The overall behaviour of the drop over one vibration cycle is
very similar in Fig. 6 (finite, but small frequency) and Fig. 7 (low
frequency limit): during the first half of the cycle (t < T/2) the drop
is flattened and moves to the right. Note that this happens when
the substrate is accelerated upwards and to the left. In the second
half of the cycle the drop becomes taller and less wide while it
slides to the left (t > T/2, substrate acceleration is downward and
to the right). After one period the drop has moved a small net dis-
tance to the left. For the parameters of Fig. 6 it takes about 100
vibration cycles to move the drop by its own length. As detailed be-
low in the conclusion, this does well correspond to the available
experimental results [15].

Based on the described findings one is able to understand the
mechanism that leads to the net motion of the drop: The compo-
nent of the oblique vibration that is normal to the substrate
strongly modulates the hydrostatic pressure and therefore pro-
vokes a nonlinear response in the drop shape, i.e., when the sub-
strate accelerates upwards [downwards] it compresses
[decompresses] the drop. That in turn determines the strongly
nonlinear drop mobility Q(h) in Eq. (1) and is therefore responsible
for an asymmetric response to the back and forth forcing that re-
sults from the parallel vibration component. As a result of this non-
linear coupling of the effects of normal and parallel vibration
component one obtains an anharmonic response of the drop to
the harmonic but oblique vibration.

The examples given in Figs. 6 and 7 where for a rather small
vibration angle b. Therefore the change in drop shape was mainly
due to the modulation of the hydrostatic pressure. For larger b
the drop additionally changes its shape in response to the parallel
vibration component. An examples is given in Fig. 8. The character-
istic backwards shoulders are known from strongly driven drops
on homogeneous substrate [31,30]. For even larger b the process
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Fig. 8. Shown are several drop shapes during one vibration cycle for an obliquely
vibrated horizontal substrate at V = 192, G = 0.001, a0 = 10, a = 0, T = 400, L = 128
and a relatively large vibration angle b = 1.
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may become very complicated as the drop can during a single cycle
undergo several morphological changes. It can transform between
a spherical cap-like drop via a drop with a backwards shoulder to a
finite film with a capillary rim [31]. We do here, however, not
investigate this regime further.

For smaller vibration angles b morphological transitions do not
occur (at reasonable accelerations a0). This allows for ‘universal’
behaviour, i.e., one finds that scaling laws that are discovered in
the low frequency regime hold in part in the entire frequency
range studied. In particular, one finds in the low frequency regime
a scaling hvi � ba2

0L1:67. Fig. 9(a) shows that for drops of identical
volume the scaling hvi � ba2

0 does hold very well as it is possible
to ‘collaps’ curves for a range of parameter pairs (a0,b) on a single
master curve. The scaling with volume does, however, not hold
(see Fig. 9(b)). Interestingly, one finds a flux reversal at high fre-
quencies, i.e., above a critical frequency xc the drops move on
average to the right. Fig. 9(b) further indicates that for larger drop
volume the reversal is more pronounced and occurs at lower fre-
quencies xc. We will end this section with an investigation of
the origin of the reversal.

To this end we show in Fig. 10 a superposition of drop profiles
obtained at frequencies above and below xc at selected times dur-
ing the vibration cycle. The profiles in the low frequency limit are
per definition ideally in-phase with the substrate vibration. At
T = 400 (x = 0.016 < xc � 0.05, cf. Fig. 9(b)) the profiles near the
times of maximal acceleration (i.e., t � T/4 and t � 3T/4) strongly
resemble the ones in the low frequency limit, although the varia-
tion in their shape is already smaller. For T = 1000 they are nearly
indistinguishable (not shown). However, around t = 0 and T = T/2
where the acceleration changes sign the convergence to the low
frequency limit is much slower as there even small phase lags
are very important (cf. Fig. 11). The overall behaviour can be well
appreciated in Fig. 11 where the dependence of the maximal drop
height on time is shown for one vibration cycle for several different
periods. With decreasing period we observe a continuous increase
of the phase shift w.r.t. the curve for the low frequency limit. The
curves of finite frequencies lag behind the one for zero frequency
and show a less pronounced variation of the drop heights.

At T = 70 (x = 0.090 > xc) the drop profiles in Fig. 10 vary much
less over time than for the lower frequencies and Fig. 11 shows a
rather large phase shift (larger than p/3) as compared to the other
curves. When increasing the frequency, due to the phase shift and
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the result in the low frequency limit. Remaining parameters are as in Fig. 6. Panel
(b) gives the scaled mean velocity hvi/V1.67 for drops of different volume as given in
the legend. Remaining parameters are a0 = 10.0, b = 0.1, a = 0.0, G = 0.001.
nonlinear mobility eventually the average response to the back-
wards force becomes smaller than the one to the forward force
and the drop shows a reversal of the net motion. The net motion
to the right becomes maximal at an optimal frequency. The influ-
ence of the phase lag still exists at higher frequencies, however,
as the changes in the profile shape become smaller with increasing
frequency, the mean velocity decreases again and approaches zero
in the limit of large frequencies. This is as well the reason why the
absolute values of the velocities that can be reached in the flow
reversal regime are much smaller than the ones in the low fre-
quency limit. Note, finally, that in the case of larger vibration an-
gles the picture becomes more complicated as the phase lag
interacts with the morphological changes. As a result the depen-
dency of mean velocity on frequency might have more than one
maximum.
5. Drop transport by decoupled horizontal and vertical
substrate vibrations

As a second example of vibration-induced transport we discuss
case (iii) introduced in Section 2 – a drop transported on a horizon-
tal substrate by decoupled normal and parallel substrate vibrations
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as experimentally observed in Ref. [18]. We focus on normal and
parallel vibrations of identical frequency that have a phase shift
and possibly different amplitudes. Following the discussion of
the underlying mechanism in case (ii) it is no surprise that a net
motion is found with the present simple long-wave model as well
for case (iii). Fig. 12 shows the dependence of the scaled mean
velocity on the phase shift for different amplitude ratios b at a
moderately large vibration period of T = 200 (x = 0.031). Very sim-
ilar behaviour is found for other periods. Interestingly, the depen-
dencies of the scaled velocity hvi/b for different b fall on a single
master curve for b [ 0.2. This implies that for b [ 0.2 particularly
important values of the phase shift do not depend on the ampli-
tude ratio. In particular, we find that flow reversal occurs at
d = 3/4p and d = 7/4p. The drop moves fastest to the left [right] at
d = p/4 [d = 5/4p]. The master curve shows the symmetry
(d ? d + p,hvi/b ? �hvi/b). Note that the symmetry holds for all
considered amplitude ratios and periods (cf. Fig. 12), as can be ex-
pected from the setup of the problem.

However, the scaling found for small b does not hold for larger b
(see Fig. 12). For 0.2 [ b [ 1.0 the phase shift that results in max-
imal net motion and the maximal net velocity hvi both increase
with increasing b. For b J 1.0 both decrease again (not shown).
This implies that the amplitude ratio that maximises net transport
is b = 1. There the phase shift resulting in maximal net transport to
the left is slightly smaller than d = p/2.

The change of the dependency of transport on phase shift with
changing period is shown in Fig. 13. In accordance with results in
case (ii) one finds that the velocities become monotonically smaller
(for all phase shifts) with increasing frequencies (decreasing peri-
ods) as the drops are less able to follow the substrate vibrations.
The phase shift where the maximal mean velocity occurs becomes
smaller with decreasing frequencies. In the limit of low frequency
the fastest transport to the left and right are found at d = 0 and
d = p, respectively.

A comparison with the experiments in Ref. [18] (in particular
their Fig. 3) shows that there the phase shift value where the max-
imal mean velocity is found and the value of the maximal mean
velocity both increase with increasing ratio of the amplitudes of
parallel and normal vibration. However, as further explained in
the conclusion, a direct quantitative comparison is not possible.
The experimental results show roughly the symmetry
(d ? d + p,hvi? �hvi). Small deviations are explained by the pres-
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L = 128, a0 = 10.
ence of defects on the substrate [18] (see, in particular, the inset of
their Fig. 2). A striking difference between the results presented
here and Fig. 3(a) of [18] is that in the latter the mean velocity de-
pends in a strongly non-harmonic way on the phase shift. In the
simulations we have not seen the experimentally found double
peak structure around the maximal velocity. This point needs fur-
ther investigation.
6. Conclusions

We have explored the usage of ratchet mechanisms to transport
a continuous phase in micro-fluidic settings involving a free li-
quid–gas interface and contact lines, i.e., under the influence of
capillarity and wettability. In particular, we have studied on the
one hand the transport of a dielectric liquid in a capacitor with
an asymmetrically spatially modulated electrical field that is peri-
odically switched on and off. In this case the ratchet-like potential
is imposed externally. On the other hand we have investigated
drops on a solid substrate that show net motion under the influ-
ence of different types of harmonic substrate vibrations. Analysing
the underlying mechanism we have found that the component of
the harmonic vibration that is orthogonal to the substrate induces
a nonlinear (anharmonic) response in the drop shape. The latter
determines the strongly nonlinear drop mobility what results in
an asymmetric response of the drop to the vibration component
that is parallel to the substrate. The induced symmetry breaking
between forward and backward motion during the different phases
of the vibration results in the observed net motion of the drop. We
have argued that the phenomenon might be seen as a rocked self-
ratcheting as the drop itself introduces the local time-reflection
asymmetry in the response to the time-periodic driving of the slid-
ing motion. We employ the term ‘rocked’ as the net motion is
strongest in the low frequency limit as is typical for rocked particle
ratchets [1]. Note as well that in the context of a drop on an incline
the component of the vibration parallel to the substrate can be
seen as a periodic rocking of the substrate.

For the vibrated drops our focus has been on two experimen-
tally realised cases [15,16,18]: an oblique substrate vibration and
decoupled normal and parallel substrate vibrations of identical fre-
quency but different amplitudes and/or phase shifts. As in the lat-
ter case the use of different amplitudes without phase shift
corresponds to the case of the oblique vibration we have mainly
analysed the dependence of the drop motion on phase shift.
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In both presented systems – the ratchet capacitor and the vi-
brated drop – the net motion results from nonlinearities related
to interface effects, in particular (electro-) capillarity and wettabil-
ity. Therefore we propose to name this class of ratchets ‘interfacial
flow driven ratchets’. As interface effects dominate, these ratchets
become more effective the smaller the involved scales are, because
in the case of capillarity the ratio of surface to volume forces scales
as L2/L3 = 1/L where L is a typical length scale of the system. This
implies that the interfacial flow driven ratchets may be good can-
didates for micro- or even nano-fluidic actuators.

One has, however, to add a word of caution. Efficiency of the
interfacial flow driven ratchets does not follow a simple universal
scaling law as various other effects enter in the different stages of
the ratchet cycles. In all cases wettability plays a role. In case (i) we
consider a stabilizing (�h�3) van der Waals force that determines
the spreading stage. In cases (ii) and (iii) destabilizing (�h�3) and
stabilizing (�h�6) van der Waals forces introduce a small length
scale h0, which corresponds to a precursor or wetting layer film
thickness that is (nearly) not affected by the typical droplet size
and dynamics. This length enters the ratio of the forces due to
the substrate vibration and the surface forces (cf. Section 2). The vi-
brated droplet ratchet works better if the ratio is not very small.

One also needs to keep in mind that all models analysed in the
present contribution are obtained employing a long-wave or lubri-
cation approximation [19,20]. That means they are relatively sim-
ple – but fully dynamical – highly nonlinear models based on a
minimal set of ingredients, i.e., Stokes flow in the lubrication
approximation, (electro-) capillarity, and wettability. They allow
to study the net transport in the ratchet capacitor and the net mo-
tion of the vibrated droplet over a wide range of parameters, to
understand the underlying mechanisms and to discuss transitions
in the qualitative system behaviour.

However, when comparing such lubrication models with partic-
ular experiments one always has to keep in mind that the formal
range of applicability of the lubrication approximation is limited
and does often not overlap with the parameter ranges where
experiments work best. The latter are often performed with li-
quid-substrate combinations that lead to equilibrium (and dy-
namic) contact angles that are not small. In our case (ii) one uses
as well large substrate inclinations and large angles between vibra-
tion direction and substrate normal. For a direct quantitative com-
parison all those angles have to be small. Nevertheless, lubrication
models are extremely successful in explaining intriguing effects
observed in a wide range of experiments involving capillarity and
wettability. A good example for this are studies of morphological
changes in sliding drops where some experiments are done for liq-
uids with static contact angles above p/4 using substrate inclina-
tions varying from zero to p/2 [32]. Lubrication theory well
explains the effects (see, e.g., [33] and the discussion in [34]).

For the vibrated drop in Ref. [15] a liquid is used that has an
equilibrium contact angle of about p/3, the substrate inclination
is p/4, and the vibration is applied at an angle of p/4 with the sub-
strate normal, i.e., the experiment is well outside the formal range
of applicability of the lubrication approximation. Therefore, a di-
rect quantitative comparison of mean velocities could only be done
through some ‘up-scaling’ procedure that lifts drop volume, con-
tact angles and vibration angle from the lubrication theory values
to the experimental ones. This might be done (and is sometimes
done). However, in our opinion the process has arbitrary elements,
and we prefer not to employ it.

The theory may, however, be related to the experiment in a
semi-quantitative way by comparing, for instance, mean velocity
in terms of drop size or typical timescales. In Ref. [15] the em-
ployed frequencies f range from 25 Hz to 120 Hz. At an acceleration
of 15 g and f = 60 Hz one finds mean velocities of about 1 mm/s, i.e.,
the drop moves less than 20 lm per cycle. For a drop of 3 mm
length this implies that it needs about 150 cycles to move by its
own length. The situation is very similar in Ref. [18] where for
the parameters depicted in their Figs. 1 and 2 it takes about 50
vibration cycles to move the drop by its own length. Note, that
their Fig. 1 does not show snapshots taken during a single cycle,
but selected pictures from 70 cycles.

In terms of the number of cycles needed to move the drop by its
own length our results are very close to the experimental findings:
At a period of T = 100 we have a scaled velocity of about 0.1 � 10�3

(our Fig. 9(a)); for a0 = 10 and b = 0.2 this gives hvi = 2 � 10�3 and
an advancement per cycle of Dx = 0.2. For a drop like the one in
our Fig. 6 this implies that it takes about 190 cycles to move it
by its own length. Employing instead the accelerations of 15 g as
in [15] it takes about 90 cycles. This is a fair agreement between
experiment and lubrication theory. One may as well discuss the
time scale t0 employed in the non-dimensionalisation and use it
to compare the relevant vibration frequencies in the model and
in the experiment.

Finally, we would like to discuss the relation of the discussed
ratchet mechanisms to transport a continuous phase to ‘particle
ratchets’. We do this by pointing out some formal analogies be-
tween the employed thin film equation and a Fokker–Planck equa-
tion for transport of discrete objects in a particle ratchet.

The film thickness evolution equation

@th ¼ �@xfQðhÞ@x½@xxhþ Pðh; x; tÞ� þ QðhÞFðtÞg: ð7Þ

shows similarities to a Fokker–Planck equation for interacting par-
ticles in an external ratchet potential [35,36]. Its non-dimensional
form is

@tW ¼ �@xfW@xPðW; x; tÞ þWFðtÞg ð8Þ

with

PðW; x; tÞ ¼ �TðtÞ log W � ~gW � Uðx; tÞ: ð9Þ

In the particular case, it is an evolution equation for the one-particle
distribution function W(x, t), where U(x, t) is a flashing ratchet po-
tential (note that the one used in [35,36] is static) ‘rocked’ periodi-
cally by F(t). The function T(t) stands for a periodic modulation of
the non-dimensional temperature, and ~g is a non-dimensional
interaction parameter. One notes that both, the first order drift or
transport term and the second order diffusion term are modulated
in time. Note that U(x, t) could as well be incorporated into the drift
term instead of the diffusion term.

However, differing from [35,36] our cases (ii) and (iii) do not
incorporate an external potential. The absence of a spatial ratchet
potential is compensated by strongly nonlinear prefactors of the
diffusion and the drift term that result in mean flow even for har-
monic driving, i.e., for a driving that shows reflection-symmetry
w.r.t. time. In the context of ‘particle ratchets’ related systems
are studied where a mean flux is created without spatial ratchet
potential but through the response of two different (weakly) cou-
pled degrees of freedom to time-periodic driving [37,38]. The de-
grees of freedom are related to two different interacting particle
species in [37], and to pancake vortices and Josephson vortices
in layered superconductors in [38]. However, in contrast to our
case in Refs. [37,38] the driving is time-asymmetric. Time-sym-
metric driving can as well induce mean transport in a ‘particle
ratchet’ without spatially varying potential if the coupling of
the different degrees of freedom is sufficiently nonlinear. Exam-
ples are the ‘vortex diode’ discussed in [39] and the rocked-pul-
sated ratchets that model a synchronized gating mechanism in
[40,41]. Note finally, that similar 4th order terms as the capillarity
term in Eq. (7) may be included in higher order Fokker–Planck
equations.
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