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Decomposition driven interface evolution for layers of binary mixtures.
I. Model derivation and stratified base states
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A dynamical model is proposed to describe the coupled decomposition and profile evolution of a
free surface film of a binary mixture. An example is a thin film of a polymer blend on a solid
substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H
describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation)
and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary
conditions at the solid substrate and the free surface. General transport equations are derived using
phenomenological nonequilibrium thermodynamics for a general nonisothermal setting taking into
account Soret and Dufour effects and interfacial viscosity for the internal diffuse interface between
the two components. Focusing on an isothermal setting the resulting model is compared to literature
results and its base states corresponding to homogeneous or vertically stratified flat layers are
analyzed. © 2007 American Institute of Physics. [DOI: 10.1063/1.2824404]

I. INTRODUCTION

Driven by applications in coating technology, micro- and
nanostructuring of soft matter layers, and, in general, the
development of (multi-)functional surfaces the understanding
of thin films of simple and complex fluids is of growing
importance. Recent years have seen on the one hand major
advances in experimental techniques of preparation and
analysis and on the other hand intense developments of the
theoretical description of the statics and dynamics of homo-
geneous and structured films.'"™ The dynamics of the struc-
turing often represents examples for micro- and nanofluidic
flows, a present focus of interest in its own right.m’11

For thin one-layer free surface films of one-component
simple or polymeric liquids experimental results®'*'* and
theoretical understandinngO’14 are well developed. How-
ever, experiments increasingly focus on complex situations
like the evolution of multilayer films of partially miscible®!
or immiscible® liquids, complex fluids like polymer blends
that might undergo dewetting or/and decompositionm’23 or
solutions of polymers, nanoparticles, colloids or polymer
blends with interacting convective motion, phase separation,
evaporation/condensation, and evolving rheology.zé‘f39 Theo-
retical descriptions exist, however, only for a small part of
the experimentally known complex scenario and phenomena
involving free surface thin films. Recent advances include a
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fully nonlinear thin film description in long wave approxi-
mation for two layers of immiscible liquids under airt®*
and between two plates,45 the analysis of the dewetting be-
havior on chemically or topographically heterogeneous
substrates, ™ the study of the dynamics of depinning of
a driven drop on a heterogeneous substrate,” the description
of films with surface active nanopalrticles,51 and the inclusion
of  evaporation/condensation in  the thin  film
description.lg‘5 1-36

Thin films of polymer blends are one of the “simplest”
complex systems listed above and extensive experimental
results can be found in the literature.**"***"~%7 Described
effects include the dependency of the evolving structure
(stratified bi- or trilayer structure that is laterally homoge-
neous; purely lateral phase separation, checkerboard struc-
ture) on substrate p1mperties,57’62’68’69 surface roughening or
film morphology changes during phase separation,63’66’67’7o
surface directed spinodal decomposition, = subsequent verti-
cal phase separation and dewetting,ﬂ’22 and surface phase
inversion.” The influence of heterogeneous substrates was
also studied.®*”! However, as detailed below, to our knowl-
edge there exists no theoretical description of the involved
processes that takes into account the evolving composition of
the mixture and the evolving surface profile of the film.

The aim of the present paper is to present such a descrip-
tion based on the underlying transport equations. To cover
the coupled time evolution of the film thickness and concen-
tration profiles one has to supplement the coupled transport
equations for momentum and concentration by appropriate
boundary conditions at the free surface and at the solid
substrate.

© 2007 American Institute of Physics
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Two groups of studies are present in the literature that
address part of the involved questions. On the one hand, the
classical Cahn-Hilliard model’? describing purely diffusive
decomposition of a binary mixture was studied for films in a
gap between two solid plates.73_75 At the plates boundary
conditions prescribe zero diffusive flow through the plates,
energetic preference of the plates for one component and an
enforced (or reduced) demixing at the plates. However, such
a model can in principle not account for an evolving surface
deflection in decomposing films as observed in phase-
separating polymer blends on homogeneousf’3’6°’67’70
patterned64’71 substrates. An evolving film profile is by defi-
nition related to a convective flow of the mixture.

On the other hand, the coupling of momentum and con-
centration transport for weakly miscible fluids (i.e., decom-
posing mixtures) is well studied for bulk systems using the
so-called model-H.”*®" Tt couples the convective Cahn-
Hilliard equation and the Navier-Stokes equations amended
by a concentration dependent stress tensor, the so-called
Korteweg stresses.®” For a survey of the history of the model,
see Ref. 83. A variant of model-H is also used for the dy-
namics of momentum and density of a single component
fluid near a liquid-gas phase transition in isothermal”"**5¢ or
nonisothermal conditions.”®*"% Two-phase liquids and bi-
nary mixtures between two solid plates are also
investigated.sg_90 A similar model for miscible liquids was
studied, for instance, in Refs. 83 and 91. There the convec-
tive Cahn-Hilliard equation is replaced by a “normal” con-
vective diffusion equation. Nowadays, model-H is also ap-
plied to multiphase flows in closed microchannels of
different  geometries  (straight  quadratic channel,”
T-junction’).

To describe a film of a mixture under air, model-H is
used to describe the dynamics within the film, i.e., modeling
the creation and evolution of “internal” diffuse interfaces
within the film. The bulk model has to be completed by
boundary conditions at the solid substrate (discussed in Refs.
94-96) and by boundary conditions at the free surface. The
latter represents an ‘“‘external” sharp interface. The interac-
tion of the internal diffuse interfaces with the external sharp
one via a solutal Marangoni effect results in an additional
driving force of the evolution.

Other related work involves an ad hoc lubrication ap-
proximation model coupling evolution equations for the film
thickness and the mean concentration in the film.”"*® We
believe that such a model might be correct in the limit of
weak vertical variation of concentration but is not able to
describe vertically stratified films and their evolution. An al-
ternative approach uses microscopic discrete models like lat-
tice gas (for results on a binary alloy, see Refs. 99 and 100)
or molecular dynamics.lo1 This leads, however, often to a
strong restriction in length and time scales that can be stud-
ied.

We present our work as a sequence of papers. The first
part derives and discusses the basic transport equations and
analyzes steady base states. The second part will perform a
detailed stability analysis with respect to transversal instabil-
ity modes for the various qualitatively different base states.
Thereby the consequences of convective transport are stud-
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ied in detail and the sequence of patterning processes is pre-
dicted. A planned further sequel will focus on the nonlinear
evolution.

The present paper is structured as follows: In Sec. II we
derive the coupled transport equations for momentum, den-
sity, and temperature in the framework of phenomenological
nonequilibrium thermodynamics. After discussing the physi-
cal interpretation of the individual contributions represent-
ing, for instance, an internal Soret effect (i.e., Soret effect for
the internal diffuse interface) and internal interface viscosity,
the model is simplified assuming an isothermal setting, van-
ishing interface viscosity, and internal energies resulting
from a setting close to the critical point of demixing. The
resulting model-H is compared to versions found in the lit-
erature discussing the issue of defining pressure and chemi-
cal potential. Section III introduces boundary conditions at
the rigid solid substrate and the free surface. It is explained
in detail why the incorporation of convective flow is a nec-
essary precondition to describe evolving surface deflections.
Next, Secs. IV and V introduce the nondimensionalization
and local energies, respectively. Homogeneous and vertically
stratified, transversally homogeneous steady state solutions
are analyzed in Sec. VI. Section VII summarizes, compares
to the literature, and gives an outlook on the sequel. The
Appendix uses variational calculus to independently derive
the boundary conditions in the static limiting case.

Il. DERIVATION OF EXTENDED MODEL-H

First we present a derivation of an extended model-H
that accounts for all cross couplings of the transport equa-
tions for momentum, concentration, and temperature. This
includes Soret and Dufour effects with nonlinear coefficients
and interface viscosity for the diffuse interface. It follows in
spirit the derivations of the Navier-Stokes equations given in
Refs. 102 and 103.

A. General transport equations
1. Conserved quantities

The starting point consists of the transport, conservation,
and balance laws for the relevant phenomenological thermo-
dynamic entities. In general, we have for a conserved scalar
or vector field a(x,7) the transport equation

J
—a+V-j =0, 1
ﬁta Ja (1)

where j! is a general flux density that is a vector or second
order tensor. Note that a dotless product always corresponds
to a tensor (or outer) product, whereas a dot “-” product is an
inner product (resulting in a tensor of the order n—2, where n
is the order of the respective tensor product). The contribu-
tion by convective transport with the velocity v is expressed
explicitly by j.=j,+av, where j, is the diffusive flux caused
by (several) microscopic mechanisms.

By definition the total mass density p(x,?) is transported
by convection only, i.e., the mass density flux is
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j,=rv=g (2)

corresponding to the momentum density g. The used conven-
tion for the velocity v is discussed at the end of the present
section.

The transport equation for the density (continuity equa-
tion) is

%p+V~(pV)=O. (3)

The density of the momentum g as well as the density of the
total energy € are transported by convective and diffusive
fluxes, i.e.,

d y
87V 1 =0. 4)
d

56+V-J'L= , (5)

where j, is the tensor of the momentum flux density and j_ is
the energy flux density. Note that all our densities are per
volume. Special care has to be taken when comparing with
approaches where all or part of the densities are defined as
“specific densities” denoting, e.g., in Refs. 89 and 81 densi-
ties per unit mass.

By explicitly denoting the transport by convection as
before, j.=€v+j and j,=vg+ @, where @ is the usual sym-
bol for the diffusive momentum flux j, (sometimes also
called pressure tensor corresponding to the negative of the
stress tensor). We will use underlined symbols to denote ten-
sors of second or higher order. Equations (5) and (4) result in

1%
—€+V-(ev)+V-j.=0 (6)
ot
and
1%
8tV (v +V.o=0, )
respectively.

Introducing the material time derivative D/Dt=4/dt
+v-V one obtains for the velocity field [Egs. (7) and (3)]

D
pF‘;+V-g=O. 8)

For a binary mixture of fluids a transport equation for the
mass density of one of the components has to be added be-
side the one for the total density p. Choosing p; we have

L
&tpl+ 'JPI_O’ (9)
i.e.,
J .
5P1+V'(P1V)+V‘Jpl=0- (10)

The density of the other component is p,=p—p;. Its transport
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is described by a similar equation as Eq. (10). The require-
ment that adding the equations for p; and p, gives Eq. (3)
determines j, ==j,, (cf. Ref. 89) as can also be seen from
the general form of j o derived later in Eq. (33). As discussed
in detail in Ref. 104 the latter condition defines the velocity
v used in the transport equations for the mass densities as the
mass-averaged velocity, i.e., the velocity also used in the
momentum equation.

We have now discussed all the conserved quantities. The
conservation of angular momentum is guaranteed by the
symmetry properties of the stress tensor (see below).'"” Next
we discuss the transport equations for nonconserved quanti-
ties.

2. Nonconserved quantities

The transport equations for nonconserved quantities con-
tain additional source terms, i.e., for a general field a one
writes

—+V-j'=0., 11
o TV da Q. (11)

where Q, is a possibly space- and time-dependent source
density. Relevant nonconserved quantities are the densities of
the internal energy u and of the entropy s.

For systems with small gradients of concentration and/or
temperature the energies do only depend on the local fields.
For strong gradients, however, this statement does not hold
any more and the energy of a system will depend also on
field gradients. In the present case we consider strong density
gradients related to diffuse interfaces between different
phases. The underlying assumption is that for a demixing
system gradients in p; might be much larger than all other
gradients. The latter enter the theory as parametric dependen-
cies on space only.

We define the internal energy u(p,p,,s,?) as the thermo-
dynamic equilibrium value for a local fluid element, i.e., it
shall not depend on gradients. The conserved total energy e,
however, shall include gradient terms in p;. The relation be-
tween the two is

P ¢
e=u+5v2+5(Vp1)2. (12)

Note that the unit of & is [é]=m’/(kgs?). The energy
densities have units [€]=[u]=Nm/m?=kg/(ms?). The
transport equation for the internal energy is

Jdu

—+V."= 13

o Ju=0u (13)
with

ji=uv+j,. (14)

For the irreversible processes in question entropy is not con-
served. The transport equation for its volume density is
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as V.i'=0 R (15)

Ziv.i'lc0 ==

(9[ -].Y s T
with j/=sv+j, the total entropy flux density. We write the
source density O, in the usual form R/T where R is the
so-called dissipation function and T is the ternperature.102

B. Determination of thermodynamic forces

The flux densities @, j, j,» jpl’ Js» and source terms R/ T,
Q, remain to be determined. The specific transport equation
for the internal energy is obtained from the transport equa-
tion of the total energy Eq. (6) using Egs. (3), (7), (10), and
(12). It reads

D
—u+uV -v+V.j,

Dt

= {— a+&Vp)(Vpy)

1 ) .
-¢ E(Vpl) +piApy |L(:Vv—=£&Ap) V -j,  (16)

with

juzje—v'ﬂ'—g(VPl)[Pl(V'V)+V'jpl]- (17)
The symbol “:” stands for a double inner product, i.e.,
g:h=2ijaijbj,-.

The time evolution of the entropy is deduced using a
local form of Gibbs relation for each fluid element, i.e., from
the assumption that small fluid elements are in thermody-
namic equilibrium. Gibbs relation for a local fluid element of
volume V writes

dU = TdS—pdV+ﬁ/1le+,ll2dN2, (18)

where U, S, p, i, Ao, N;, N, stand for internal energy,
entropy, pressure, chemical potentials of component 1 and 2,
and particle numbers of component 1 and 2. The chemical
potentials (with hat) are related to particle numbers. The re-
lation (18) is transformed expressing extensive variables by
the corresponding densities using U=uV, N;=n;V
=p;N,/M;V, N=N{+N,, p=p—py, and S=sV, where N is the
total particle number, M; is the molar mass of component i,
and N, is the Avogadro number. One obtains

du=Tds + pdp + pudp;
+(—u+ pop+ pgpy + Ts—p)dVIV. (19)

The chemical potential u,=/a,N,/M, of component 2 and
the difference of the chemical potentials of components 1
and 2 p,= N,/ M- ,N,/ M, are related to volume densi-
ties and have units [u,]=[u,]=m?/s>.

Relation (19) is valid for arbitrary local volume V, i.e.,
one obtains the local Gibbs relation

du=Tds + p,dp + udp, (20)

and the local Gibbs-Duhem relation
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p=—u+Ts+ pop+ ugp;. (1)

Here, we observe that, within the framework of volume den-
sity quantities, p behaves as a thermodynamic potential that
is related to u by the Legendre transform (21). Furthermore,

T <o7u) (o"u) d (au)
=\ > M=\ T , and pg=\ T .
ds PPy 0P $,py &pl S,p

(22)

Equation (20) is divided by a small time span dr that is,
however, large as compared to typical microscopic time
scales yielding

du ds dp dp
o= _+,U~2_+,U~dd_tl- (23)

dr dt dt
This relation is valid in all local volume elements that might
be convected by the flow, i.e., the derivatives d/dt corre-
spond to Lagrangian or material time derivatives denoted
above D/Dt. Using Egs. (3), (10), and (16) one transforms
Eq. (23) into the wanted form of Eq. (15),

as ju jp
PRl [SV+;+71(§AP1—M(1)}

1
= }{— o+ &Vp)(Vpy)

1
+ [p - &piApy — g(Vm)z}l}:(VV) +u V(;)

. EAp - 1y

with the pressure p and the flux of internal energy j, given
by Egs. (21) and (17), respectively. Here it is already pos-
sible to see the structure of the dissipative contribution to the
pressure or stress tensor (the part in {} on the rhs). The re-
versible entropy transport [cf. Egs. (15) and (24)], i.e., the
entropy flux

(24)

i, J
= v e - 1y 25)
contains the convective transport, the transport via the heat
flux, and the transport via the diffusive flux of species one.
Comparing Egs. (15) and (24) allows us to identify the
source term for the entropy. It is related to irreversible pro-
cesses and written in terms of the dissipation function

R= {— a+&Vp)(Vpy)

1
+ {p - &p1Apy — g(Vm)z}l}:(VV) +Tj,- V(;)

EAp, —.ud)

T (26)

+Tj,, - V(
We can directly deduce the reversible part g of the pressure
tensor o=0’+ a*, because only the dissipative part “ con-
tributes to the dissipation function, i.e.,
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o =&Vp)(Vp) + | p—&pAp, - g(Vm)2 L (27)

Note that the negative of o”"—pl is known as the capillary or
Korteweg stress tensor in the literature.””"88284 The dissipa-
tive part g is also called viscose pressure tensor or friction
tensor. The dissipation function has the structure
R=%j,f, where the j, and f, are general thermodynamic
fluxes and forces, respectively, that might be tensors. Corre-
spondingly the *“-” stands here for a “complete” inner product
(scalar product).

We have the fluxes j,, j p,» and — o with the correspond-
ing forces

1
fuzTV(}>, (28)
£ =Tv(m), (29)
1 T
f,=Vv. (30)

In the last step of the derivation, the thermodynamic fluxes
have to be determined. Following Onsager, we first make the
basic ansatz of linear nonequilibrium thermodynamics, i.e.,
we postulate a linear dependence of the fluxes on all the
forces (if symmetry permits), i.e.,

ip=2 Lga £, (31)

with L, z=Lg, (Onsager relation, resulting from microscopic
reversibility). Specifically, we get for the fluxes

. 1 §Api— 1
‘]uzTI_JW'V(}) +TI_4up1 'V(#j)’ (32)
. 1 EAp1 — g

Jo =T V(}) + 1Ly, V(T ’ (33)
o'=—Lg:Vv. (34)

The cross-coupling terms in j, and j p, correspond to (gener-
alized) Dufour and Soret effects, respectively. Note that there
is no linear coupling between the momentum flux and the
thermodynamic forces corresponding to temperature and
concentration gradients. However, when discussing the total
energy for systems with large gradients in the density p; we
included quadratic terms in the density gradient. For consis-
tency, a nonlinear term, quadratic in the forces f o should be
added to relation (34) resulting in

V§AP1 - Md)<V§AP1 - ,U«d)'
T T

o= —Lg:Vv— nggp1:<

(35)

The additional term is related to irreversible aspects of the
dynamics of the diffuse interface and can be seen as a gen-
eralization of the term S, proposed in the conclusion of Ref.
89 that reads
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S, =B8(V)(VY, (36)

where f is an undetermined empirical coefficient and { is the
difference between the chemical potentials of components 1
and 2 for an inhomogeneous equilibrium which in our terms
is {=pu,— EAp, as is discussed below, after Eq. (57) and also
in Ref. 77. ggpl corresponds to a tensor of interfacial viscosi-
ties. Related issues are discussed for sharp interface theories
in Ref. 105.

The L, are tensors of various orders: L, is of order 2,
whereas L, and ggpl are of order 4 (i.e., in the general case
there are 3*=81 components: viscosities). Assumption of an
isotropic medium significantly reduces the number of
coefficients.'”

Considering small interfacial viscosities only, we neglect
the corresponding terms and finally get

k Ap, —
ju=—?lVT+k2TV<§pl—T'ud>, 37)
jmz—%VT+hTV<§£%JQ> (38)
== AV V)= g Vv + (VW) -3V - V)], (39)

where ¢ and 7 are the dynamic and shear bulk viscosity,
respectively, and the kinetic coefficients have the units
[k, ]=kgm/s®, [g]=[{]=[k,]=kg/ms and [k3]=kgs/m?>.
The governing equations are now obtained by introducing
the fluxes Eqgs. (37)-(39) into the corresponding transport
equations. Introducing Eq. (38) into Eq. (10) we get for the
transport of py,

d k EAp— 1
5m+v4mw+v{-%VT+@Tv«—ﬁfl

=0 (40)

and for momentum transport feeding Egs. (39) and (27) into
Eq. (8) we have

v v
—+pv-Vv
Pm p

=-V. {S(Vpl)(Vpl) + {p - &piAp, - g(Vm)z}l
—(V-v)- n[Vv +(Vv) = %HV . V):|} (41)

Assuming that u, and w, are given, to obtain a closed set of
equations we still need an equation for the evolution of the
temperature field. We obtain it by multiplying the transport
equation for entropy Eq. (24) with T, and expressing the
entropy via the Gibbs relation in a similar way as Batchelor
(pp. 35ff and 136ff of Ref. 102).

After reordering Eq. (24) yields
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T&+TV =-TV [‘i—”+h(§A )]+R
pr TN YE T At

(42)

All terms on the rhs are already known. We next determine
the lhs terms. Consistent with Gibbs relation (18) one can
express the entropy as a function of 7,V,N, and N,. Using
the second law of thermodynamics we write

A as
dQ =TdS = CydT + T(—) v+ T(—) dN,
WV/rn, INy/ 1y,

as
+ T( _> sz, (43)
N>/ rv,

where Q stands for the heat supplied to the system. Fixing N,
and N, the last two terms vanish. Expressing volume V in
terms of 7,p,N;, and N,, assuming fixed N; and N, yields

Vv 2%
av=Z) ar+ (2] ap.
T/ pn, /TN,

Substituting into Eq. (43) we obtain (assuming fixed N, and

N)
A A%
Tas=|c,+71 =) (2] |ar
o)\t ),y

as av as
+T| — — dp=C,dT+ T\ — dp.
IV/rn\OP /TN, dp/rN,

(44)

Introducing the thermal expansion coefficient

_ l(ﬂ’)
V\oT PNN,

and comparing the respective prefactors of d7T in the two
lines of Eq. (44) we rewrite Eq. (43) as

c,-C s
dQ =TdS = CydT + —L—"av + T(—) dN,
BV IN, T.V.N,
a8
+T| — dN,. (45)
N, T.V.N,

Assuming that the material constants C,,Cy and B are
known we next focus on the last two terms of Eq. (45).
Consistent with Eq. (18), we write for the Helmholtz free
energy, F=U-TS, of a local fluid element V in thermody-
namic equilibrium

dF = d(U— TS) =— SdT—pdV+ ﬂlle + ﬂszz. (46)

Partial differentiation of Eq. (46) with respect to N, and T
gives
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(a_S) _<1(£) )
INy/rvn, \INI\JT/yy, VAN,

and

(fﬂ) =<i(£) ) @)
IT )y, \OT\IN{/ryy, V’N_’

respectively. Identifying the mixed second derivatives we ob-
tain the so-called Maxwell relation for S and 4,

as a
() (0. w
INy/ 1y, dT Jyn,

Analogously, we obtain the Maxwell relation for S and f,.
Using them we rewrite Eq. (45) as

c,-C Py
TdS = CydT + —2—Lqy — T(ﬂ> dN,
BV ot )y

o
—T(ﬁ> dN,. (49)
ot )y

Note that there exist other ways to express the heat. The one
chosen here is advantageous because the equation explicitly
contains dV. This allows us to consider the incompressible
case by setting dV=0 (see Sec. Il C). The dependencies of
the chemical potentials on temperature will also be given.

Next, let us rewrite local Gibbs and Gibbs-Duhem rela-
tions, Egs. (20) and (21), in terms of the density of the Helm-
holtz free energy, f(p,p;,T,t)=u—Ts,

df == sdT + podp + padp., (50)

p=—f+pp+ pap: (51)

using the above introduced procedure for obtaining local
Gibbs (20) and Gibbs-Duhem (21) relations, we derive from
Eq. (49), the relations for the volume densities of the exten-
sive quantities

P P
Tds = cydT - T(ﬁ> dp- T(ﬂ) dp, (52)
i), i),
and
c,—¢C J d
Ts:J_v_T<ﬁ) p_T<ﬁ> . (53)
B ir ), i),

respectively. As above, w,=ia,N,/M, and pu,=aN,/M,
—fi,N,/ M, are related to densities not to particle number.
Note that we also changed the notation for partial derivative
with respect to T regarding the chemical potentials u,, w, as
defined by Eq. (50).

Finally, dividing Eq. (52) by dr, identifying d/dr with the
material derivative D/Dt, substituting into Eq. (42), using
Egs. (3) and (10) and reordering we obtain the transport
equation for the temperature field
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DT c¢,—c Jd
cy—+ L=V 'V+T(ﬂ> Vi,
Dt B IT /o, !
j, J
=-TV {J;M%(&pl—m)}m. (54)

The system consisting of Egs. (3), (40), (41), and (54) de-
scribes a compressible binary mixture in a nonisothermal
setting. Comparison of the general case with Ref. 89 turns
out to be rather cumbersome because there specific densities
and molar fractions are used. The present system is more
complete because our thermodynamic fluxes include all pos-
sible thermodynamic forces that were determined before-
hand. In contrast, Ref. 89 directly assumes Fick’s, Fourier’s,
and Stokes’ law. In the isothermal case our system can be
compared to the one derived in Ref. 81. Momentum and total
mass density equations agree when taking into account dif-
ferent pressure definitions (also see Sec. I C). However, the
isothermal version of our Eq. (40) does not agree with their
Eq. (3.34c). The difference can be traced back to their gen-
eralized Fick’s law [their Eq. (3.24b)]. It is based on a gen-
eralized chemical potential derived from a specific free en-
ergy density, whereas in our view it should have been based
on volume density of the free energy.

C. Model-H: Bulk equations

Next, we simplify the coupled equations for temperature,
momentum, and volume density of component 1 by assum-
ing a fluid with constant density p (which implies incom-
pressibility V-v=0), in an isothermal setting (constant 7).
This can be done without problems when assuming that the
mass densities of the two pure components are identical. For
the subtle issues arising for densities that are different, in-
cluding the question of quasi-incompressibility we refer to
Refs. 81 and 104, and references therein. Further, we express
the density p, in terms of a mass concentration c;=p,/p and
obtain from Eq. (40) the convective Cahn-Hilliard equation

%+V-VCI+V~[M1V(a'clAcl—,[id)]:O, (55)
where we introduced i =ppy 0. =p°é, and My=ks/p’.
Note that ¢, is dimensionless and [0, ]=m kg/s?,
[ ]=kg/ms? and [M,]=s m®/kg. Care has to be taken
when comparing to other authors that use volume or mole
fraction instead of the mass concentration used here, e.g.,
Refs. 89 and 104.
The momentum Eq. (41) reduces to

g
RANE S {acl(vﬁ)(wl)
3 2
| p=oe ey = —(Vey)® |1+ 7Av,
(56)

where the mechanical pressure is given by the local Gibbs-
Duhem relation (21), i.e., p=—u+ u,p+Ts+ i c,. We empha-
size that p as the mechanical pressure for a homogeneous
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material in the thermodynamic equilibrium is a locally de-
fined variable that should not depend on any gradient or
derivative. However, for simplicity we introduce an effective
pressure peg, that incorporates all terms in the square brack-
ets in Eq. (56). Equations (55) and (56) are normally called
model-H.”’

In the literature model-H is presented in various forms.
Especially, the momentum equation is written in different
ways. Most differences arise from different definitions of the
pressure peg introduced in the last paragraph. In the follow-
ing we indicate how to translate the different formulations
and point out “irreducible” differences.

The review by Anderson et al.” gives the transport
equation for the momentum in a binary mixture [their Eq.
(17b) with Egs. (16a) and (19)] in our notation

d O, 2
p|:EV+V'VVi| =-V. l(pA— T(VCI) )l

+ O'L‘I(Vcl)(Vcl):| + 7Av. (57)

However, their Eq. (20) for their chemical potential . indi-
cates that they do not follow their Eq. (10), but already ab-
sorbed additional terms into their u.. Our formulation coin-
cides with theirs identifying their py—o, (Ve 1)?/2 and
our pes . The difference in the formulation arises because
Anderson et al. use u, in place of our ,[Zd—(rCIAc]:ﬁ in the
thermodynamic pressure definition, i.e., their u.=u is the
chemical potential for an inhomogeneous equilibrium. Then
also their Eq. (21) corresponds to our Eq. (55).

Jasnow and Vifals’ present two forms for the momen-
tum equation

d
p|:5V+V'VV:|=—VpJ\/+ 7AV+ Ve, (58)
[their Eq. (2)] and
d — _
p{a—tv+v~Vv]=—VpJV+ nAv—c,Vpu (59)

[their Eq. (2) with the replacement described in the last para-
graph of their Appendix]. They also use u instead of i, We
introduce different symbols p;, and pj, for the respective
pressures. The second form can be obtained from ours taking
into account V-[pegy I+ 0. (Ve )(Vey)]=¢, V a+Vp. The first
form just follows from integration by parts and redefining the
pressure again: p y=p;—Ci M.

The form of model-H presented in the review by Hohen-
berg and Halperin76 gives a momentum equation [their Eq.
(5.1b)] that agrees on the first view with the second form of
Jasnow and Vifals Eq. (59). However, they dropped the pres-
sure term, i.e., in the limit of constant concentration their
model does not reduce to the Navier-Stokes equations.

Finally, we rewrite model-H in terms of the difference of
concentrations c=c;—c,=2c¢;—1. Introducing new param-
eters 0'C=0'Cl/4 and M=4M, and specifying the chemical
potential x,;=24,f(c), where f(c) is the concentration depen-
dent part of the local free energy, results in
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dc+v-Ve==V-{MV[o.Ac-3.f(c)]} (60)
and
av
P tpY Vv==V -{0.(Vc)(Vc) + pegel} + pAv, (61)
where
0-(‘
Peir=p — 0c(c+1)Ac— ?(VC)2~ (62)

Fixing f(c) to be a symmetric double-well potential, Eq. (60)
corresponds to the convective Cahn-Hilliard equation stud-
ied, for instance, in Refs. 106 and 107. The energy will be
further discussed in Sec. V. Because of its importance for the
boundary conditions (see Sec. III) we also give the stress
tensor

7= = perl = 0. (VO) (Vo) + 7 Vv + (VV)'], (63)
where (p—pep)I-0.(Vc)(Ve) represents the Korteweg
stress.?®3 The pressure p.; can be calculated from the Pois-
son equation

Apesr == 0 (VV):[(Ve)(Ve) ] = p(Vv):(Vv). (64)

We emphasize that the Korteweg stress is reversible as dis-
cussed above at Eq. (27). Reversibility clearly appears using
the variational approach in the Appendix that leads to the
bulk force equilibrium [discussed below in Eq. (A28)], i.e.,
the static limit of Eq. (61). Compare also the variational
approach in Ref. 81 and the simplified version in the Appen-
dix of Ref. 108.

In the literature the various formulations of model-H are
mainly used to describe the behavior of bulk flows.”” Sys-
tems confined between rigid plates are considered in some
cases’ >S5 assuming (i) the diffuse interface is far away
from the plates, and (ii) the walls are neutral with respect to
the two components. However, the role of energetically bi-
ased plates and the evolution of a free surface of the binary
mixture have to be understood in their interaction with the
bulk flow to be able to describe an evolving free surface film
on a solid support. The necessary boundary conditions are
discussed next.

lll. BOUNDARY CONDITIONS

A. Concentration

For the concentration field the boundary conditions were
discussed in connection with a purely diffusive transport for
a system confined by rigid plates.73 75 Assuming the velocity
is zero at the rigid substrate (no-slip condition, see Sec.
III B) the conditions for the full model-H are similar. We
have zero diffusive flux through the substrate (z=0),

oo Ac=3,/(c)]=0 (65)
and obtain in the general case an evolution equation for the
concentration (see the Appendix)

de+v-Ve==MT-0.0.c— 0 Ac+d.f(c)], (66)

where A=V-V, and V,=(d,,d,). Here, however, we will
focus on a surface energy that (i) does not depend on con-
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centration gradients (o”=0) and (ii) relaxes instantaneously
to its equilibrium value (M~ — ).

At the free surface [z=h(x,y,7)] one has the condition
of zero diffusive flux through the moving surface, i.e.,
n-j, =0 with j, as defined in Egs. (10) and (38),

(= dch,— 9 h,1)
n=
[1+(d,h)* + (3,)*]"

(67)

is the normal vector of the free surface. The change from the
total flux j,;l [Eq. O)]t0j, = j,;l —pyv exactly accounts for the
transformation into the frame moving locally with the sur-
face. One gets

n-V[io,Ac-4d./f(c)]=0. (68)

The second condition is in the general case again an evolu-
tion equation for the concentration field on the boundary as
derived in the Appendix. The evolution equation is valid in
the local comoving frame, i.e.,

de+v-Ve=-Mon-Vie-o"Ac+a )], (69)

where A;=V,-V,, and the surface nabla operator is defined as
V,=(I-nn)-V. In the following we assume as above
o*t=0 and M*—oo. We will drop the respective terms after
the nondimensionalization in Sec. IV. Take note, that the
units of the surface parameters differ from the ones of the
corresponding bulk parameters: [M*]=s/kg, [oF]=kg m?/s?,
[4.f*]=N/m=kg/s>.

We finally point out, that the concept of an evolution
equation for the concentration at the surface should not be
confused with an evolution equation for a soluble surfactant
that is located at the surface but is also in part dissolved in
the bulk liquid. There, one normally assumes a certain rate
for transitions of surfactant molecules from the surface to the
bulk and vice versa. As a consequence, one then deals with
separate transport equations for the species at the interface
and in the bulk (see, e.g., Ref. 3). Even for finite M*, Eq.
(69) does not correspond to such a surfactant evolution equa-
tion but only describes the concentration at the surface with
a finite relaxation time to equilibrium. M* quantifies the mis-
match of surface relaxation and bulk relaxation time.

B. Velocity

The boundary conditions for the velocity fields are the
no-slip and no-penetration condition at the solid substrate
(z=0),

v=0, (70)
and the force equilibrium at the free surface (z=h),
(I_Zair)'nz_Y(c)nV -l’l+Vs’y(C). (71)

Note that V-n corresponds to the curvature of the free sur-
face. We assume that the ambient air does not transmit any
force (7,;,=0). The first term on the rhs of Eq. (71) corre-
sponds to the Laplace or curvature pressure, whereas the
second one represents a Marangoni force tangential to the
interface and results from the variation of the surface tension
along the surface caused normally by a solutal or thermal
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Marangoni effect. As shown in the Appendix these terms can
be derived from a minimization procedure.

For a pure Navier-Stokes problem the Marangoni term is
often modeled as a linear dependence of the surface tension
on concentration or temperature. Here, however, one has to
use a condition in accordance with the interface energies
introduced when discussing the boundary conditions for the
concentration field, i.e., at Eq. (69). For 0*=0 and M*— oo
[see Eq. (69)] the surface tension y(c) corresponds to f*(c)
plus a constant (reference tension v, see below Sec. V). For
ot # 0 the surface tension depends as well on concentration
gradients y=19{c,(V,c)?], a concept that has not yet been
followed in the literature. Considering a finite M* would
correspond to a y(c,1), i.e., to a dynamical surface tension
characterized by a relaxation time towards its equilibrium
value. Both complications will not be considered further in
the present paper.

The boundary condition (71) is of vectorial character,
i.e., three scalar conditions are derived by projecting it onto
n, t;, and t,, respectively, where

(1,0,0,h) _(0,1,0,h)
Y G 2T T (72)

are the (nonorthogonal) tangent vectors. The resulting scalar
conditions

—o,m-Ve)? =peg+2mm-(Vv) -n=—9c)V -n, (73)

— o (t; - Vo) - Vo) + oty - [Vv + (VW) '] -n=t, - Vo),
(74)

—o.(ty- Vo) - Ve) + gty - [Vv+ (VV) ] -n=t,- Vy(c)

(75)
correspond to equilibria of normal and tangential forces,
respectively.

At the free surface one has furthermore the kinematic

condition, i.e., the prescription that the surface follows the
flow field

dh=n-v\1+(Vh)? (76)
which can be written in a more compact form as
(0h) -n=v-n, (77)

where the vector h=h(x,y,?)e, is tracking the free surface.

IV. NONDIMENSIONALIZATION

Next, we nondimensionalize the bulk equations and the
boundary equations in two steps: (i) introduction of abstract
scales for velocity, pressure, length, concentration, and en-
ergy density that leads us to a set of dimensionless numbers;
(ii) introduction of problem specific length and velocity

Phys. Fluids 19, 122106 (2007)

scales to obtain a minimal set of dimensionless numbers
valid for the problems without external driving studied here.

A. Abstract scales

Introducing scales

dimensionless  scale dimensional
1 T,=11U t=r,t’
x’ [ x=Ix’
4 U v=Uv'
, , (78)

P P p=PFPp
¢’ C c=Cc'

f(c") E fle)=Ef'(c")

fA B FO=EAC)

one obtains after dropping the primes the dimensionless bulk
equations

dc+v-Ve==Ts V -{V[Ko Ac - d.f(c)]} (79)

and

d P
Ps[—V +v- VV] ==V -{Ko'(Vc)(Vc) + peid} + —SAV,
ot Re
(80)
where
Per=p — Ko'(c + l)Ac—%Ko’(Vc)z. (81)
We defined the dimensionless numbers

Ul
Re=—p,
7

Reynolds number

o,C?
PE

Korteweg number 1 Ko =

s

o,.C?
I’P

Korteweg number 2 Ko’ = , (82)

ME
vic*’

Time scale ratio Ts=

. pU?
Pressure scale ratio Ps= T

We propose the name “Korteweg number” because both of
them are related to the Korteweg stresses. The Korteweg
numbers can be seen as “bulk Marangoni numbers.” For the
determination of the energy scale E, see Sec. V.

The scaled boundary conditions for the concentration
field at both interfaces are the no-flux condition

0=n-V[Ko Ac - d,f(c)] (83)

and the evolution equations for the concentration at the sur-
face
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dec+v-Ve==Ts*[Kon-Vc-Ko"A,c + En*d.f*(c)].
(84)
For the substrate one sets n=(0,0,-1).

At the free surface the conditions for the normal and
tangential forces are

P
—Ko'(n-Ve)? = peg+ 2R—Sn- (Vv) :n==8y%()V -n,
e

(85)
Ps
—Ko'(t;-Ve)(m-Ve) + —t, - [Vv+(Vv)']-n
Re
=5t - Vo), (86)
-Ko'(t, - Ve)(n - Ve) + %tz Vv+ (V)] n
=Sty Vo), (87)

respectively, where vy is the dimensionless surface tension
referred to below in Sec. V as vy'. The dimensionless num-
bers are either given above or listed next

. oC
Boundary Korteweg number Ko™ = ﬁ’
. . . EPM*
Boundary time scale ratio Ts*= W

(88)

+

Boundary energy number En*= 5

Surface tension number S = 7_1(,)'

B. Specific scales

For relaxational settings, i.e., systems without external
driving forces, one might specify scales based on the “inter-
nal” diffusive or convective transport. Assuming very vis-
cous liquids and taking into account that all structure forma-
tion will be driven by the decomposition process, it is
convenient to base all scales on the diffusive processes only.
Fixing Ko=1 and Ts=1 length and velocity scales become

o, ME
I=/—C and U=-——, (89)
E IC

respectively. Choosing a pressure scale based on the energy
density scale

P=E (90)

identifies the two Korteweg numbers, i.e., Ko’=Ko=1. The
specific forms of Reynolds and Pressure numbers are then
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MEp pM’E  pM*E?
Re= o2 and Ps= 2c = o
7 o,

(1)
respectively, i.e., Ps/Re=nM/[>*C*= yME/ o.C*. The dimen-
sionless numbers related to the boundaries become
PM* M*a)*C? ot o*E"
’I‘Si —4 — # e
M ME lo

92)

Note that Ts*—c for M*— and Ko*=0 for o*=0 (see
discussion in Sec. III),
E* E*
En*=—=—5—>— and Szﬁ %0

=~ (93
IE o)?E"C IE  o)’E"*C 03

The relation of S and the “classical” Marangoni number is
discussed in the next section.

V. LOCAL ENERGIES

For the local bulk and surface energies we use a simple
polynomial, an approximation valid near the critical point.
However, it is straightforward to introduce other expressions
derived using Flory-Huggins or more advanced theories.*
For the bulk energy a symmetric quartic potential is used

T b
Mc2 +=c*

=fo— 94

fle)=fo-= 2 (94)
corresponding to the nondimensional form [Egs. (78)]

f’(c'):};(c”— 1) + const (95)

with E=bC* and C= \r’%. Note that the physical constants
appearing in the bulk can be measured experimentally or be
computed from first principles. Indeed, as discussed in Ref.
56 in the context of a gas-liquid interface and in Ref. 109 for
binary mixtures they can be derived from intermolecular po-
tentials.

For the surface energies of the two interfaces we use the
respective quadratic expressions

T+

b
o=y +a‘c+ Ec2. (96)

Note that in the framework of model-H for a film of binary
mixture the surface energies f~(c¢) and f*(c) correspond to
the concentration dependent surface tensions of the liquid-
solid and the liquid-gas interface, respectively. This implies

that f*(c) is responsible for a linear (b*=0) or nonlinear

(b*#0) Marangoni effect. The surface energies 7, and ¥,
are the respective reference surface tensions at ¢=0.

Using the reference surface tension of the free surface as
a scale for both interfaces, i.e., Et=E = ygz Yo, We arrive at
the nondimensional expressions

+ bt
f’i(c’)=§+aic’+gc'2 (97)
0

and identify y'=f"*(c’). The dimensionless parameters
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. a=C . bC?
a*=—— and b*=— (98)
Yo Y

describe preferential adsorption of one of the species at the
interface and changes in the interaction between the species
at the respective interfaces. Inspecting Eq. (86) it becomes
clear that the ‘“classical” Marangoni number for a linear
Marangoni effect is Ma=a*S. The corresponding number for
a quadratic Marangoni effect is Ma,=b"S (compare, for in-
stance, Refs. 110 and 111). Furthermore, we can now specify

En*=En" =—=8. (99)

This implies that the boundary conditions for concentration
and momentum transport at the free surface are intrinsically
coupled. Note, finally that these considerations only apply
for Ts*— o and Ko*=0. See discussion in Secs. III and IV.
In the following we only work with dimensionless quantities
and drop all primes.

We are now equipped with a complete model to investi-
gate a wide variety of systems involving decomposing mix-
tures with free surfaces. Although, the boundary conditions
in Sec. IIT are written for a film on a solid substrate they can
be easily adapted for free standing films, i.e., for a film with
two free surfaces. Also droplets of a mixture on a solid sub-
strate can be studied if the given model is supplemented by a
condition at the contact line such as a concentration depen-
dent equilibrium contact angle. This will be the scope of
future work.

To understand the evolution of the surface and concen-
tration profiles of a decomposing film we next analyze (i) the
homogeneous and vertically stratified base state solutions,
(ii) the transversal instability of the base state solutions that
lead to the experimentally observed film profiles and concen-
tration patterns, and (iii) the full nonlinear time evolution.
Part (i) will be studied in the remainder of the present paper,
part (ii) forms the content of a sequel planned to appear in
2008, and part (iii) will be presented in future work.

VI. BASE STATES

The understanding of the behavior of a thin film of a
mixture on a solid substrate has to be based on an analysis of
the base state solutions. For a film on a horizontal substrate
without further driving forces parallel to the substrate the
base states are quiescent, i.e., the velocity of the fluid mix-
ture is zero. We distinguish two types of quiescent base
states: (a) completely homogeneous flat film and (b) horizon-
tally (transversally) homogeneous but vertically stratified
film.

A. Completely homogeneous film

A completely homogeneous film of arbitrary thickness
h(x,y)=hy, with arbitrary concentration ¢(x)=c, and with
quiescent fluid vy=0 corresponds to a base state solution of
the systems (79)—(97) only if there exists no energetic bias at
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the solid-liquid interface or the free surface, i.e., without any
linear or nonlinear Marangoni effect: a*=b*=0. The corre-
sponding effective pressure is p.g;=0.

For energetically biased interfaces the boundary condi-
tions for the concentration field are only fulfilled if d,./*(c)
=0, i.e., for ce=—a*/b*=—-a"/b". For finite a*,a" this is from
the experimental point of view a very unlikely case. Here we
will not pursue it further. However, for a*=a"=0 a homoge-
neous film of a critical mixture (c,=0) represents a base state
for any b* and b~. This case corresponds to a purely qua-
dratic Marangoni effect. Experimentally, it is not a very com-
mon case but was studied in hydrodynamics for films of
alcohol solutions'"" and also as a problem of purely diffusive
demixing in a gap. The latter case was analyzed in detail in
Refs. 74 and 75, and will serve as a benchmark for our linear
stability analysis in the forthcoming sequel paper.

B. Vertically stratified, horizontally homogeneous film

Depositing a thin film of a mixture on a solid substrate it
is to be expected that processes that lead to a vertical strati-
fication are much faster than processes that lead to a hori-
zontal structuring if the film thickness is similar or below the
length scale of bulk decomposition. The vertically stratified
films may on a larger time scale undergo a further horizontal
structuring. The finally emerging horizontal length scales and
structures can be understood from the “short-time” vertical
layering. Therefore we focus next on a systematic investiga-
tion of steady layered films.

A flat layer (h=hg) of a quiescent fluid mixture (v,=0)
represents a base state if the vertical concentration profile ¢
=c((z) is a steady solution of the classical one-dimensional
nonconvective Cahn-Hilliard equation

dc=30.[0..c—d.f(c)]

and the boundary conditions (i) 0=0[d..co—d.f(cy)] (at
z=0and z=h) and (ii) 0=[%d.co+S9,./(co)] (“=" at z=0 and
“+” at z=h). Taking into account (i) one has to solve the bulk
equation d..co—d,f(cy)+K;=0 with boundary conditions (ii).
The constant of integration K; represents the dimensionless
chemical potential for an inhomogeneous equilibrium as dis-
cussed after Eq. (57).

The remaining equations and boundary conditions are
fulfilled with peg=peg(z) =—(d,co)*+const, i.e., the layers are
completely characterized by c¢((z). The condition corre-
sponds to an exact compensation of the vertical component
of the Korteweg force V-(Vc)(Vc) by the vertical component
of the pressure gradient Vp . The horizontal component is
identically zero.

In the following we determine families of solutions in
terms of concentration profiles for (i) energetically neutral or
nonbiased surfaces, (ii) symmetrically biased surfaces, (iii)
antisymmetrically biased surfaces, and (iv) asymmetrically
biased surfaces. Thereby we characterize the concentration
profiles by the energy

E=f"+f + [([(0.0)* + f(c)ldz — hf(1),

i.e., their relative energy w.r.t. the state of minimal energy
(c==1), and the L,-norm,

(100)

(101)
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FIG. 1. (Color online) Branches of steady vertical concentration profiles for
energetically nonbiased (neutral) surfaces (a*=b*=0) and a critical mixture
(c=0) is dependent on the film thickness i. Shown are (a) the L,-norm and
(b) the energy E. Dashed line: trivial homogeneous solution. Selected cor-
responding profiles are given in Fig. 2. S=1, and the symbols are explained
in the main text.

1 h
[|éc]| = \/21 [c(z) - cdz,
0

where ¢ is the mean concentration. Note that E should only
be used to compare films of identical # and c¢. Although the
profiles ¢(z) can be expressed analytically through Jacobi
elliptic functions (see Ref. 112 and also the Appendix of Ref.
113), determination using numerical continuation
techniques114 is more practical.

(102)

1. Energetically neutral surfaces

The results for the trivial case of energetically neutral
solid substrate and free film surface are given in Fig. 1 for a
critical mixture, i.e., the case of zero mean concentration ¢
=0. Shown are the L,-norm and the energy E per film area.
Figure 2 presents selected concentration profiles. The base
states for a film correspond to selected solutions of the one-
dimensional bulk Cahn-Hilliard equation. A multiple of the
period has to be equal to the film thickness. At the substrate
and the free surface the profile always has a local extrema.
This allows us to classify the obtained solution branches by

Phys. Fluids 19, 122106 (2007)

n=3/2

z/h

FIG. 2. (Color online) Selected concentration profiles corresponding to Fig.
1. Note that each of the solutions has a “twin” obtained by ¢ — —c that also
corresponds to an allowed profile. This degeneracy may be lifted by ener-
getically biased surfaces (depending on the symmetry z— hy—z, see below).
The n=1/2 profiles corresponding to the energy minimum for the respective
film thickness are shown as heavy (red online) lines.

the number of periods n. The simplest stratified films corre-
spond to half a period (n=1/2), one period (n=1), one and a
half periods (n=3/2), and so on.

Note that the solutions with an integer n are symmetric
with respect to a reflection at the plane z=hy/2, i.e.,
co(@)=colhy—z). We call them in the following
“z-reflection-symmetric.” They are accompanied by a twin
solution with identical L,-norm and energy obtained by an
inversion of concentration: c((z) ——cy(z). On the contrary,
the solutions with a noninteger n are antisymmetric with re-
spect to a reflection at the plane z=hy/2, i.e., co(z)=—cy(hy
—z) (“z-reflection-antisymmetric”). The resulting second so-
lution has naturally identical L,-norm and energy, and can
also be obtained by an inversion of concentration. We will
also call it the twin solution.

The bifurcation diagram is not very involved. For all
film thicknesses there exists the trivial homogeneous solution
with ||6c||=0 and linearly increasing energy E=2+h/4 (bro-
ken lines in Fig. 1). Nontrivial branches bifurcate succes-
sively at h;=im/k,, where i=1,2,3,... and k.=-3,.f(co)
=1 —3c(2) corresponds to the critical wavenumber for the lin-
ear instability of the homogeneous solution c=c, of Eq.
(100). For the critical mixture considered in Fig. 1 one finds
h;=i. Furthermore, all characteristics like E,[h] or ||&c]|,[/]
of all branches n=i with i=1 can be mapped onto the char-
acteristics of the n=1/2 branch. For example, for the energy
one has E[h]=E,;[h/(2i)]. Note, however, that the bifurca-
tions are degenerate because as discussed above two twin
solutions related by symmetry bifurcate at once.

A thin film in an experiment will tend towards the con-
stellation with the minimal energy [see Figs. 1(b) and 2], i.e.,
for h < the homogeneous layer and for 2> 7 the stratified
layer with n=1/2. The multilayer constellations with n=1
may, however, appear as transients as they are saddle fixed
points in phase space that attract time evolutions from a cer-
tain basin of attraction and repel them consecutively into the
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FIG. 3. (Color online) Branches of steady vertical concentration profiles for
linearly symmetrically biased surfaces (a*=a~, b*=0) of a critical mixture
(c=0) dependent of bias a for film thicknesses as given in the legend.
Shown are (a) the L,-norm and (b) the energy E. Selected corresponding
profiles are given in Fig. 5. The branch numbers n for the different film
thicknesses are given using different fonts: 2=3.5 bold, h=5 italic, h=10
normal. Lines and labels are of corresponding colors (online). S=1, and the
symbols are explained in the main text.

few unstable directions (for a more extensive discussion of
that concept in connection with dewetting on heterogeneous
substrates, see Ref. 49).

2. Symmetrically biased surfaces

The presented rather detailed description of the steady
states for energetically neutral surfaces will help us to under-
stand the involved behavior for biased surfaces. Allowing for
arbitrary linear (a”,a*) and quadratic (b™,b") energetic bi-
ases opens a four-dimensional parameter space additionally
to the parameter “film thickness.” We give an overview of
the system behavior by focusing on a linear bias (b~ =b*
=0), and by using several special ratios a*/a”. In this way
we obtain a 2D parameter space spanned by a* and h.

In the present section we assume that the two surfaces
energetically prefer the same component with equal strength
(a*=a7), i.e., we have symmetrically biased surfaces. Fig-
ures 3 and 4 show characteristics of solution branches depen-
dent of the bias for fixed film thickness and dependent of the
film thickness for fixed bias, respectively. Corresponding so-
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FIG. 4. (Color online) Branches of steady vertical concentration profiles
dependent of film thicknesses for linearly symmetrically biased surfaces
(a*=a"=0.2, b*=0) and a critical mixture (¢=0). Shown are (a) the L,-norm
and (b) the energy E. Selected corresponding profiles are given in Fig. 5.
S=1, and the symbols are explained in the main text.

lutions between Figs. 1 and 3 are marked by filled symbols
in the L2-norm plots. Hollow symbols indicate correspon-
dences between Figs. 3 and 4. Concentration profiles for a*
=0.2 corresponding to the hollow symbols are given in Fig.
5(a), whereas panel (b) gives profiles for a large bias of
at=0.6.

First, we focus on Fig. 3. We introduce branch names
indicating the “nonbiased branch” (Fig. 1) they are emerging
from. This convention does not correspond to actual proper-
ties of the concentration profile. For instance, the profiles on
the n=0 branch in Fig. 3 are not homogeneous any more. For
small film thicknesses <</ <27 only two solutions exist at
a*=0 corresponding to two branches for increasing a*>0.
Thereby the n=0 [n=1/2] branch is unstable [stable]. Fur-
ther increasing the bias the two branches approach each
other. For h=3.5 the n=1/2 branch terminates in a super-
critical bifurcation on the n=0 branch. For 2=5 the stable
n=1/2 branch first undergoes a saddle-node bifurcation turn-
ing unstable before it finally terminates in a subcritical bifur-
cation on the n=0 branch. Beyond the bifurcation the n=0
branch is stable in both cases.

For im<h<(i+1) one finds i solutions at a*=0 exem-
plified in Fig. 3 for =10, where four solutions exist. In-
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FIG. 5. (Color online) Selected concentration profiles corresponding to Figs.
3 and 4 for (a) a*=0.2 and (b) a*=0.6 sorted by branch number as indicated
in Fig. 4. Film thicknesses are indicated in the legends. The profiles corre-
sponding to the energy minimum for the respective film thickness and bias
are shown as heavy (red online) lines. The minuscule b in the n=1 panel for
a*=0.6 denotes the profile on the side branch of the n=1 branch (cf. Fig. 3).

creasing a*>0 one finds, however, five emerging branches
because the degeneracy of the n=1 solution at a*=0 is lifted
by the energetic bias. See the discussion of symmetries
above in Sec. VIB 1.

The z-reflection-symmetric solutions (integer n) have at
a*=0 a “twin”-solution obtained by c(z) ——c(z) that reacts
differently when imposing a symmetric energetic bias, i.e.,
the bias lifts the degeneracy and two distinct branches are
generated like, for instance, in Fig. 3 for h=10 and n=1 (see
also profiles in Fig. 5). Note that the n=0 branch is a special
case without degeneracy at a*=0 (trivial solution at a*=0).
On the contrary, the “twin”-solutions of the
z-reflection-antisymmetric solutions (noninteger 7) do not re-
act in a different way to a symmetric bias, i.e., their degen-
eracy is not lifted.

Coming back to the case =10 we see that when further
increasing a* most branches end in bifurcations. One branch
finally survives for large bias corresponding to a layer of
“liquid +” enclosed by two layers of “liquid —” that is pre-
ferred by both surfaces for a*>0. This implies that depend-
ing on the strength of bias the energetic minimum corre-
sponds to qualitatively different stratifications: bilayer
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FIG. 6. (Color online) Branches of steady vertical concentration profiles for
linearly antisymmetrically biased surfaces (a*=—a~, b*=0) and a critical
mixture (¢=0) dependent of bias a for film thicknesses as given in the
legend. Shown are (a) the L,-norm and (b) the energy E. Selected corre-
sponding profiles are given in Fig. 7. S=1. The branch numbers n for the
different film thicknesses are given in different fonts: 2=3.5 bold, h=5
italic, h=10 normal. Lines and labels are of corresponding colors online.

(n=1/2) structure for small a* and a sandwich trilayer
(n=1) structure for large a* (see heavy red online) lines in
Fig. 5.

Note finally that the diagram is symmetric Ww.r.t.
a*——a*. Focusing on the branch of lowest energy that rep-
resents the solutions selected by the system we see that the
role is taken for small (large) a* by the n=1/2 (n=1 or n
=0) branch. It is intuitively clear that a strong symmetric
bias will suppress the z-reflection-antisymmetric solutions.
The alternative view of fixing a* and changing 4 is given for
a*=0.2 in Fig. 4 allowing for a better comparison with Fig.
1. From this representation it becomes clear that for a*>0
the two branches emerging from the n=1 solution “break
off” the n=0 branch at 7=2. A similar process occurs at all
h=2i for integer i.

3. Antisymmetrically biased surfaces

In contrast to the preceding section, here we assume
at=-a", i.e., the two surfaces energetically prefer different
components. The preference is, however, equally strong. We
focus on a*>0, i.e., the free surface prefers the ¢ <0 com-
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FIG. 7. (Color online) Selected concentration profiles corresponding to Fig.
6 for a*=0.2 sorted by branch number as indicated in Fig. 6. Film thick-
nesses are indicated in the legend. The profiles corresponding to the energy
minimum for the respective film thickness and bias are shown as heavy (red
online) lines.

ponent. The case a*<<0 is related by symmetry. Figures 6
and 8 show solution branches in dependence of the bias and
of film thickness, respectively (in analogy to Figs. 3 and 4).
Selected corresponding profiles are given in Fig. 7.

In contrast to the case of symmetrically biased surfaces
we find that for small a*>0 two branches emerge from the
n=1/2 and n=3/2 solutions but only one from the n=1
solution. Here, the degeneracy of the solutions at a*=0 is
only lifted for the z-reflection-antisymmetric solutions (non-
integer n), but not for the z-reflection-symmetric solutions
(integer n). In the former case one of the twin solutions at
a*=0 is favored by the antisymmetric bias, whereas the other
one is disfavored, i.e., they decrease and increase their en-
ergy with a*, respectively [Fig. 6(b)]. One of the n=1/2
solutions is the only one that “survives” for large bias a*. It
is furthermore this solution that corresponds to the energy
minimum for all a* [see heavy (red online) lines in Fig. 7].

The alternative view of fixing a* and changing /4 is given
for a*=0.2 in Fig. 8. Contrary to Sec. VI B 2 for a*>0 the
n=0 branch is “broken off” at h=2n1 by the respective two
branches emerging from the noninteger n solutions.

4. Asymmetrically biased surfaces

As an intermediate case compared to the two preceding
sections, we focus next on a =0 and a™>0, i.e., the sub-
strate is energetically neutral, whereas the free surface pre-
fers the ¢<0 component. Note that the cases a”=0 and
a*<0, a>0 and a*=0, a~<0 and a*=0 are related by
symmetry.

Figures 9 and 10 show solution branches in dependence
of the bias for fixed film thickness and dependent of the film
thickness for fixed bias, respectively. Here the bias lifts all
degeneracies existing for a*=0, i.e., from each solution at
a*=0 emerge two branches (beside the n=0 branch). Corre-
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FIG. 8. Branches of steady vertical concentration profiles for linearly anti-
symmetrically biased surfaces (a*=-a"=0.2, b*=0) and a critical mixture
(c=0) dependent of film thickness. Shown are (a) the L,-norm and (b) the
energy E. Selected corresponding profiles are given in Fig. 7. S=1.

spondingly, Fig. 10 shows that for a*>0 the two branches
emerging from every integer and noninteger n solution
“break off” the n=0 branch at all h=2n.

The branch of lowest energy is here for all a* and h the
n=1/2 branch, i.e., a simple two layer structure. This is,
however, by no means a general result but depends on the
specific asymmetry chosen. For a strong bias that is only
slightly asymmetric (like, for instance, a =a*+A with
A < a") the branch of lowest energy will still be the sand-
wich structure discussed in Sec. VI B 2.

C. Off-critical mixtures

We have seen that the case of a critical mixture c=0 can
be used to understand the basic solution structure for strati-
fied films. However, it has to be kept in mind that a critical
mixture represents a rather special case. Experimental sys-
tems will normally consist of off-critical mixtures with
¢ #0. In the present section we give selected results for the
general case.

For small ¢# 0 the branch structure for nonbiased sur-
faces is given in Fig. 11 for ¢=0.25. It is qualitatively
equivalent to the one for a critical mixture (cf. Fig. 1). For
larger ¢ the primary bifurcations become subcritical. Eventu-
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FIG. 9. (Color online) Branches of steady vertical concentration profiles for
linearly asymmetrically biased surfaces (a*>0, a~=b*=0) and a critical
mixture (¢=0) dependent of bias a* for film thicknesses as given in the
legend. Shown are (a) the L,-norm and (b) the energy E. S=1. The branch
numbers n for the different film thicknesses are given in different fonts: &
=3.5 bold, h=5 italic, h=10 normal. Lines and labels are of corresponding
colors online.

ally the trivial solution becomes linearly stable. It is, how-
ever, metastable, because finite perturbations may trigger a
nonlinear instability. For those ¢ no primary bifurcations ex-
ist. All branches of stratified solutions continue towards in-
finite thickness. The bifurcation diagrams for biased surfaces
become quite involved for the subcritical and metastable
case and will be discussed elsewhere.

Focusing on the case of supercritical primary bifurca-
tions shown in Fig. 11 we next discuss the influence of sym-
metrically biased surfaces presented in Fig. 12. The general
form of the bifurcation diagram for a*>0 is qualitatively
very similar to the case of a critical mixture (Fig. 3). How-
ever, the symmetry w.r.t. a* ——a* does not hold anymore. It
is replaced by a symmetry w.r.t. (¢,a*) — (-¢,-a").

Also for antisymmetrically biased surfaces one finds
similar bifurcation diagrams for nonsymmetric (Fig. 13) and
critical (Fig. 6) mixtures. The antisymmetry of the boundary
conditions implies that the symmetry w.rt. a*——a* also
holds for the off-critical mixture. Finally, in the asymmetri-
cally biased case shown in Fig. 14 all degeneracies at
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FIG. 10. Branches of steady vertical concentration profiles for linearly
asymmetrically biased surfaces (a*=0.2, a~=0, b*=0) and a critical mixture
(c=0) dependent of film thicknesses. Shown are (a) the L,-norm and (b) the
energy E. S=1.

a*=0 are broken as in the case of a critical mixture (Fig. 9).
Furthermore, now also the symmetry w.rt. a*——a* is
broken.

VIl. CONCLUSION

We have proposed a dynamical model that describes the
coupled decomposition and profile evolution of a free sur-
face film of a binary mixture, a process frequently encoun-
tered in coating and structuring processes. An example is a
thin film of a polymer blend on a solid substrate undergoing
simultaneous phase separation and dewetting. We have based
our approach on model-H coupling transport of the mass of
one component (convective Cahn-Hilliard equation) and mo-
mentum (Navier-Stokes-Korteweg equations). We have used
the framework of phenomenological nonequilibrium thermo-
dynamics to derive a generalized model-H coupling transport
equation for momentum, density, and entropy in the frame-
work of phenomenological nonequilibrium thermodynamics.
Then we have discussed the individual contributions repre-
senting, for instance, an internal Soret effect and interface
viscosity. The model has been simplified for isothermal set-
ting, vanishing interface viscosity, and internal energies re-
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FIG. 11. Branches of steady vertical concentration profiles for nonbiased

+

surfaces (a*=b*=0) and off-critical mixtures (¢=0.25) dependent of film
thickness . Shown are (a) the L,-norm and (b) the energy E. S=1.

sulting from a setting close to the critical point of demixing.
A comparison with literature results has clarified the issue of
defining pressure and chemical potential.

To facilitate the description of a free surface profile we
have introduced boundary conditions at the solid substrate
and the free interface. It has been explained that the incor-
poration of hydrodynamic flow even in the case of extremely
slow creeping flow is a necessary precondition for the de-
scription of evolving surface deflections. It has been shown
that the dimensionless numbers entering the boundary con-
ditions for the Cahn-Hilliard and the Korteweg-Navier-
Stokes are closely related. Therefore they cannot by any
means be chosen independently of each other. After nondi-
mensionalization we have analyzed possible steady base
state solutions for laterally homogeneous films of decompos-
ing mixtures. In doing so we have distinguished vertically
homogeneous and vertically stratified films. It has been
shown that a plethora of stratified solutions exist that can be
mapped, ordered and understood using continuation tech-
niques and symmetry arguments. The obtained systematics
will form the basis for the analysis of the lateral stability of
the base states undertaken in the forthcoming part II. In the
Appendix we have used variational calculus to independently
confirm the boundary conditions for the static limiting case.

Our results on vertical stratifications can be compared to

Phys. Fluids 19, 122106 (2007)

n=
0.8f
o6 0 TN E—TT AT -~ -
n=1/2 ~
. - A=112 il
—— P /
w3 b / &
= 041 | " -
\\ | sn=0
L o //
N
02 N h |
\ —=5
- \\ n=0 — 10
| L | L L | L |
S 0.5 0 0.5 1
(a) a

Energy

(b) ' +

FIG. 12. (Color online) Branches of steady vertical concentration profiles
for linearly symmetrically biased surfaces (a*=a", b*=0) and an off-critical
mixture (¢=0.25) dependent of bias a* for film thicknesses as given in the
legend. Shown are (a) the L,-norm and (b) the energy E. S=1. The branch
numbers n for the different film thicknesses are given in different fonts: &
=5 italic, =10 normal. Lines and labels are of corresponding colors online.

a broad variety of experimental data on static film structures.
However, they can also be used to interpret transitions ob-
served in slow time evolutions. Most of the results on verti-
cal layering reviewed in Ref. 4 can be explained at least
qualitatively. Most static vertical layerings observed in thin
films of polymer blends either correspond to two-layer or
sandwich-like three-layer structures that we have found to be
the only structures of lowest energy depending on the ener-
getic bias of the surfaces.

The interesting case of the evolution of a relatively thick
(500 nm) decomposing d-PMMA/SAN blend film™ is pre-
sented in Fig. 16 of Ref. 4. The vertical profile develops from
a homogeneous film to a two-layer structure, with d-PMMA
collecting at the solid substrate. However, the path to equi-
librium passes through a sandwich-like three-layer structure.
This can be easily understood from the solution structure
presented for antisymmetrically biased surfaces in Fig. 6.
There the n=1 (sandwich-like three-layer structure) has a
lower energy than the n=0 or n=3/2 solution but a higher
energy than the final n=1/2 solution. The n=1 solution cor-
responds to a saddle in phase space, i.e., it attracts time evo-
Iutions of a broad range of initial conditions and then expels
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FIG. 13. (Color online) Branches of steady vertical concentration profiles
for linearly antisymmetrically biased surfaces (a*=-a", b*=0) and an off-
critical mixture (¢=0.25) dependent of bias a* for film thicknesses as given
in the legend. Shown are (a) the L,-norm and (b) the energy E. S=1. The
branch numbers n for the different film thicknesses are given in different
fonts: 4=5 italic, #=10 normal. Lines and labels are of corresponding colors
online.

evolutions in its only unstable direction directing the evolu-
tion towards the final two-layer structure. Which “saddle so-
lutions” will be involved in a time evolution depends on the
wavelength of the fastest linear mode. For a similar discus-
sion for dewetting films on a heterogeneous substrate, see
Ref. 49 Sec. III.

In another experiment using a PEP/d-PEP blend film®
presented in Fig. 21 of Ref. 4 it is shown that the equilibrium
layer structure changes from d-PEP/PEP/d-PEP to d-PEP/
PEP by varying the substrate surface energy. This corre-
sponds in our idealized setting to a transition from symmetri-
cally biased surfaces (e.g., at k=10, a*=0.8, n=1 branch) to
anti- or asymmetrically biased surfaces (e.g., at k=10, a*
=0.8, n=1/2 branch). The observed change in the layering of
lowest energy corresponds well to the experiments.

To conclude, the present work has presented a complete
model to investigate a wide variety of systems involving the
coupled evolution of surface and concentration profiles of
free surface films of a decomposing mixture. It can be used
to analyze vertically stratified but horizontally homogeneous
films and their evolution in time. This includes layer inver-
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FIG. 14. (Color online) Branches of steady vertical concentration profiles
for linearly asymmetrically biased surfaces (a*#0, a~=0, b*=0) and an
off-critical mixture (¢=0.25) dependent of bias a* for film thicknesses as
given in the legend. Shown are (a) the L,-norm and (b) the energy E. S=1.
The branch numbers »n for the different film thicknesses are given in differ-
ent fonts: h=5 italic, h=10 normal. Lines and labels are of corresponding
colors online.

sions of two-layer systems with diffuse or sharp interfaces
that cannot be described by two-layer models for immiscible
liquids.“o’44 The dynamics of such an inversion is quite com-
plex. For instance, for a substrate/liquid 1/liquid 2/air two-
layer structure it involves the transient formation of drops of
liquid 1 at the liquid 2/air interface.”® The typical distance of
those droplets can now be calculated using a linear transver-
sal stability analysis of the unstable two-layer profile. For
antisymmetrically biased surfaces it exists, for instance, for
h=5 up to a*=0.3 (Fig. 6).

Our model also allows us to study the emergence of
permanent lateral structures using a transversal stability
analysis of the stratified layers (see sequel paper) or a simu-
lation in time. Especially, it allows to quantify the influence
of hydrodynamic transport on the dynamics.

Note that the model can be adapted for several related
problems. Although, the boundary conditions in Sec. III are
posed for a film on a solid substrate they can easily be
adapted for free standing films, i.e., for a film with two free
surfaces. Also drops of a mixture on a solid substrate can be
studied if the presented model is supplemented by a condi-
tion at the contact line. The latter will be the scope of future
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work. Also the used model of local bulk and interface ener-
gies can easily be replaced by more realistic functions as
discussed in Ref. 4. Choosing parameters that correspond to
a stable mixture also the dynamics of mixing in a free sur-
face film can be studied.
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APPENDIX: VARIATIONAL APPROACH

This Appendix uses variational calculus to derive the
static limit of the bulk equations and boundary conditions
from the underlying Helmholtz free energy functional of the
Cahn—Hilliard—type72 for a two-dimensional film of binary
mixture. The three-dimensional case will be presented else-
where for a more general setting. The free energy functional

Fle(x,2),h(x)] = Fylc(x,2), h(x) ] + F [ c(x,h(x)), h(x)]
(A1)

consists of a bulk part F), and a surface part F, defined as

0 h(x) o
F,,:f f {j(Vc)2+f(c)}dzdx—)\d
- J(

oo} {f -]

bf s
9

(A2)

(A3)

The second and third integral in F), are taken over the same
area as the first one, the symbol () is introduced for conve-
nience. The symbol J{) denotes the boundary of the domain
of integration (). We assume that the surface free energy
does not depend on (Vc¢)?, i.e., the bulk free energy gradient
term is not amended at the free surface. Such a contribution
and its physical consequences will be discussed elsewhere.
The Lagrange multipliers A, and N enforce mean concentra-
tion of component 1, ¢;=(c+1)/2, and total area of the do-
main to have the prescribed values C; and A, respectively.
Later, we will discuss their relation to the local chemical
potentials u,, u,; and mechanical pressure p.

To vary F with respect to all possible degrees of freedom
in a transparent way we define small changes of the functions
cand h as

h(x;a) = h(x) + af(x), (Ad)

c(x,z;a) = c(x;a) = c(x) + an(x), (A5)

where ( and #» are arbitrary admissible functions and
x=(x,z). The variation of & and ¢ corresponds to the opera-
tion d,| 4 i.€., Oh(x)={(x), c(x)=7(x). However, not only
the local concentration and the interface position are varied.
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Varying the latter also implies that fluid elements have to
vary their position due to convective motion.

The variation of the bulk contribution to the free energy
functional can be written as

oo h(x) A
5Fb=f f O'CVC'V77+((9(f—;d>77 dzdx
—o J ()

ffesff o]

+ f” |:%(VC)2+f(C)_)\dCl —)\]g(x)dx, (A6)

—00

where we used 6V c=V éc. Integrating by parts the term con-
taining V7, we get

00 h(x) A
5Fb=J f {—Uc(Ac)n+(&cf—Ed>7]}dzdx
—o J ()

ffoaeolf ]

+ % o,(Vc) -nnds
a0

+Jw {%(Vc)zﬂc(c)—)\dﬁ—)\]g(x)dx' (A7)

Next, we turn our attention to the surface contribution
F,. concentrating on the most interesting top part of the
boundary d(), i.e., the free surface. We denote the corre-
sponding part of F as F\ and write it as

* d
F{P= f fs[c(xs)]icdx, (A8)
where
d —_—
d—i =1 +[0,h(x)P. (A9)

For the point x,(x)=[x,A(x)] at the free surface and its varia-
tion we have

X,(xr;a) =[x, h(x) + 2L (0)],
(A10)
ox(x) =[0,4(x)].

Then &c[x,(x)]=Ve(x,)- 8x,+ 7(x,;). Using Egs. (A9) and

x,(x) we have expressed the integrand of (A8) as a function
of x. The variation of F\'® is

“[ 4 d
SFP = f [c?cfs—s se(x,) + £.(¢) 6—S}dx
o dx dx

=f | |:3JS(VC- X, + n)j—s + fi(c)dht - V{}dx,
o X
(A11)

where we used Eq. (A9) and applied
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94x) di(x)dx d{(x)
(ds/dx)  dx ds ds

=t-V¢. (A12)

The last step is correct if the fields that are only defined at
the surface (here £, but valid also for &, n, t, etc.) are inter-
preted as being defined everywhere with values independent
of z.

Next, integration by parts has to be applied to eliminate
derivatives of the variations. One uses

fa(t -Vb)ds = J a(t-Vb)%dx

ds
:—fbV ~[t—a]dx
dx

__ J bit- Va)ds. (A13)

Assuming laterally periodic or localized structures, surface
terms resulting from the integration by parts are zero here.
We obtain

SFP = f {&CfS(Vc- X+ 7))

—t-V{fs(c)%&xh]g}ds. (A14)

Performing derivatives and substituting from Eq. (A10) we
arrive at

OF ¥ = f °° {0-'cfv[(&zc)§ + 7] = [(t- Vf)a.h

—f.gK]d—xé}ds, (A15)
ds

where

dh

v 0T Ao

is the curvature. Note that « is positive for a convex surface
of the fluid. Terms with (d,f,){ can be simplified as follows:

ds dx dx
(&ﬂ){(@ﬁa —(t- VC)ﬁxh} £§= (Fef)(m - Vd;s’
(A17)

resulting in the final expression

—00

sren= | {[(n V)i + FI G+ () n}ds.

(A18)

The variation of the contribution of the free energy at the
bottom part of the boundary d€), denoted by 5Fls’°t, can be

obtained as a special case of F'P. In Eq. (A11) we consider
X (x)=(x,0), 5%,=0,ds/dx=1 resulting in

SF™' = f d.fymdx. (A19)

Phys. Fluids 19, 122106 (2007)

Next, writing 8F = 8F,+ 6F'P+ 8F**'=0, one is in prin-
ciple ready to extract governing equations and natural
boundary conditions of the problem. Inspecting the form of
Egs. (A7), (A18), and (A19) one notes that we obtained two
scalar boundary conditions on the free surface as the prefac-
tors of arbitrary admissible functions 7, { in the boundary
integral of the stationarity condition 6F=0,

on-Ve+df,=0, (A20)

%(Vc)2 +f(c)=Nger =N+ (- Ve)d.fo+ fk=0,

(A21)

respectively. In order to obtain force boundary conditions,
we need to express our variations £, 7 in terms of the virtual
displacements because mechanical forces are energetically
conjugated to them.

For this purpose, we introduce the variation of the posi-
tion of a fluid element due to convective motion. The varied
Euler coordinates x of a fluid element specified by its mate-
rial (Lagrange) coordinates X can be expressed as

x(X;a) =X + ax(X), (A22)

x(X) = x(X), (A23)

where x=(x,,x.) is an arbitrary admissible displacement
vector. Both coordinate systems coincide for a=0. The free
surface has to follow the fluid as is expressed by the kine-
matic condition Eq. (77). This introduces a dependency be-
tween the variations { and y, i.e.,

Oh(x) = {(x) == d,h(x) x,(x) + x.(x), or
(A24)

dx
(ez-n=§d—=x-n.
\)

Next, we consider a fluid element identified by its referential
position X. The varied concentration at this element can be
expressed using Eq. (A22) as

c(x;a) = [ X+ ax(X)] + an[X + ax(X)], (A25)

being consistent with Eq. (A5). Consider for a moment that
no diffusion is active. In that case the concentration c(X; @)
changes only due to convection described by x. As a conse-
quence, the concentration at the arbitrary but fixed fluid ele-
ment X should remain constant, i.e.,

X+ ax(X)] + anlX + ax(X)])

= Ve[ X+ ax(X)]- x(X) + 7 X + ax(X)]=0.
(A26)
We denote the variation # that satisfies this condition as 7,

(convective) and the remaining part as 7y (diffusive) varia-
tion. As a consequence, we have

N= 1o+ Nai == Ve X+ T (A27)

where 7y; is a variation independent of x because it is caused
by a different physical process.
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Using Egs. (A27) and (A24), we write the stationarity
conditions for the variation 6F= 6F,+ OF . Prefactors of the
variations in the bulk and at the free and bottom surface give
the Euler-Lagrange equations of the problem. The prefactor
of 7y in the bulk integral gives

Ay

—oAc+d.f- >

=0, (A238)
i.e., the correct static limit of the 2D version of Eq. (60).
From this equation we deduce that —20'L.Ac+2&cf=—o'clAc]
+ a=M\, is the chemical potential for a heterogeneous equi-
librium discussed in Sec. II C. The prefactor of x gives Eq.
(A28) multiplied by Ve. It is the static limit of the bulk
momentum equation, i.e., the bulk force equilibrium Eq. (61)
with v=0. We can see that if we substitute for up,=0d,f(c)
X(c+1) in Eq. (51) and put the resulting expression for p
into Eq. (62), simplify it using Eq. (A28) (which holds with
respect to &c), and use the result to eliminate p.g in Eq. (61).
Finally, after performing the divergence operation we arrive
at Eq. (A28) multiplied by Vec.
The surface integrals yield as the prefactor of 7,

on-Ve+df;=0, (A29)

i.e., the static limit of the 2D version of Eq. (66) with
07=0 and of Eq. (69) with 6*=0. On the free surface the
vectorial prefactor of y,

(n-Ve)(dfm=(Ve)d fi+ fexm—on-(Ve)(Ve)

+ %(Vc)2 +f(e)=Nye =\ |n=0 (A30)
gives, using I-nn=tt and reordering,
—on-(Ve)(Ve) = pegm=tt- Vf— fikn (A31)

with
Ppeir= (0 — o Ac)(c+ 1) - %Wc)z —flO+N, (A32)

where we used Eq. (A28) for A,. We proceed to identify the
quantities in p. Using Eq. (51), we substitute the free en-
ergy density f(c) in Eq. (A32) and simplify to

Par=p=pap=ole+ DAc=ZX(VeP N, (A33)
taking into account that 2(d,f)c; = fyc; = mgp;. The pressure

Peir in Eq. (A33) coincides with the one defined in Eq. (62) in
case that

N = wop. (A34)

We conclude that Eq. (A31) gives the tangential and the
normal force equilibrium conditions at the free surface and

corresponds to the static limit of the boundary conditions
(71) with Eq. (63).
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