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Abstract
In the present contribution we review basic mathematical results for three physical systems
involving self-organizing solid or liquid films at solid surfaces. The films may undergo a
structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively.
We highlight similarities and differences of the three systems based on the observation that in
certain limits all of them may be described using models of similar form, i.e. time evolution
equations for the film thickness profile. Those equations represent gradient dynamics
characterized by mobility functions and an underlying energy functional.

Two basic steps of mathematical analysis are used to compare the different systems. First,
we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the
systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and
quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying
solution structure might be very complex as in the case of epitaxial growth but can be better
understood when comparing the much simpler results for the dewetting liquid film. We
furthermore show that the numerical continuation techniques employed can shed some light on
this structure in a more convenient way than time-stepping methods.

Finally we discuss that the usage of the employed general formulation does not only relate
seemingly unrelated physical systems mathematically, but does allow as well for discussing
model extensions in a more unified way.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Structure formation at interfaces and surfaces occurs widely
in our natural and technological environment. The spectrum
of related phenomena ranges from growing dendrites in
solidification or crystallization to budding membranes in the
biological cell. Technological processes based on, or affected
by, interfacial structuring processes involve, for instance, the
sputtering of solid surfaces (that may roughen), the usage of
instabilities in the epitaxial growth of nano- or quantum dots,
the structuring of homogeneous liquid or elastic coating layers,
the deposition of structured nanoparticle assemblies employing
instabilities and heat-exchanger technology based on transfer

1 homepage: http://www.uwethiele.de

enhancement by surface waves on falling liquid films. A
selection is discussed in [1].

Part of the mentioned structuring processes can be
modelled as an evolution in time of a surface profile. Models
are normally based either on a stochastic microscopic discrete
or a deterministic mesoscopic or macroscopic continuum
approach. For an overview of methods for the modelling
of (solid) nanostructures see [2]. Here, we focus on the
continuum approach. There exists an important subset of
systems that evolve towards an equilibrium state corresponding
to an energetic minimum, i.e. normally these are relaxational
systems without any external forcing.

A continuum description of relaxational systems can often
be brought into the form of time evolution equation(s) for one
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or several conserved or non-conserved order parameter fields
φ(x, t) (cf [3]). A non-conserved field might still follow, in
part, a conserved dynamics. The dynamics is governed by
the underlying energy functional F[φ]. The simplest form
for a time evolution of a purely dissipative system without
any inertial Hamiltonian dynamics corresponds to the gradient
dynamics

∂tφ = ∇ ·
[

Mc∇ δF

δφ

]
− Mnc

δF

δφ
(1)

with the Mc(φ) � 0 and Mnc(φ) � 0 being the mobility
functions for the conserved and non-conserved parts of the
dynamics, respectively. Here and in the following ∂t and ∂x

denote partial derivatives w.r.t. time and space, respectively.
A typical example is the Cahn–Hilliard equation

describing the demixing of a binary mixture, i.e. a purely
‘conserved dynamics’ (Mnc = 0) [4, 5, 3]. Another example
is the Allen–Cahn equation describing, for instance, the
dynamics of the Ising model in the continuum limit [3].
Multiplying equation (1) by δF/δφ and integrating one obtains
after a partial integration

dF[φ]
dt

= −
∫

Mc

(
∇ δF

δφ

)2

dV −
∫

Mnc

(
δF

δφ

)2

dV � 0

(2)
confirming F[φ] to be a Lyapunov functional.

In the context of evolving surfaces or interfaces, such
an equation appears in various contexts. We will discuss
here (i) film thickness equations for films of non-volatile and
volatile liquids on solid substrates and (ii) surface profile
equations for epitaxial growth.

Equation (1) might describe the evolution of the surface
profile of an evaporating or condensing thin liquid film
on a solid substrate under the influence of capillarity and
wettability. In this case, the function φ(x, t) represents the film
thickness profile and the functional F[φ] is given by

F[φ] =
∫ [

γ

2
(∇φ)2 + f (φ) − μφ

]
dV (3)

where γ is the liquid–gas surface tension and f (φ) is a local
free energy, related to the disjoining pressure �(φ) by � =
−∂φ f (φ). The term μφ represents an overall energy bias
towards the liquid or gaseous state. It is solely responsible
for evaporation/condensation of flat ‘bulk’ films, i.e. films that
are thick compared to the range of the disjoining pressure. μ

corresponds to a chemical potential. For details and specific
choices for the disjoining pressure see, e.g., [6–11].

For Poiseuille flow in the film without slip at the substrate
the mobility for the conserved part is Mc = φ3/3η, where η is
the dynamic viscosity. Several slip regimes might be accounted
for by different choices for Mc(φ) [12]. The mobility function
for the non-conserved part is normally assumed to be a constant
(see [13]). Note that there exists an ongoing discussion
regarding the form of the non-conserved part of the dynamics
(cf, e.g., [14–17, 13, 18]).

Equation (1) with (3) is extensively studied in the
conserved case, i.e. for non-volatile films (Mnc = 0).

It can easily be derived from the Navier–Stokes equations
and appropriate boundary conditions at the substrate and
the free surface employing a long-wave or lubrication
approximation [9, 11]. Depending on the particular physical
situation studied many different forms for the local energy
function f (φ) are encountered. Beside ‘proper’ disjoining
pressures that model effective molecular interactions between
film and substrate (wettability) [19, 20, 6, 7, 21–23, 10, 24] the
equations may as well incorporate other pressures modelling,
e.g., the influence of an electric field on a film of dielectric
liquid in a capacitor [25–29] or films on homogeneously heated
substrates that form structures due to a long-wave Marangoni
instability [14, 30–34]. The latter is especially interesting
because it represents a system that is kept permanently out
of equilibrium but is nevertheless described by a gradient
dynamics. Note that the situation is slightly different in a
closed two-layer system [35] that can, in two dimensions, be
described by equation (1) with an appropriate F[φ] but not in
three dimensions.

The above-mentioned Cahn–Hilliard equation describing
the conserved dynamics of demixing of a binary mixture
corresponds to equations (1) and (3) with a constant Mc, Mnc =
0 and f (φ) being a symmetric double well potential. As
a consequence, many results obtained for the decomposition
of a binary mixture have a counterpart in the dewetting of
thin films and vice versa. The analogy was first noted by
Mitlin [8] resulting in the notion of ‘spinodal dewetting’. Note
that there exist other choices for f (φ) and Mc in the Cahn–
Hilliard equation [36, 37]. Equations of similar form may as
well model the epitaxial evolution of surfaces of crystalline
solids [38–40, 2]. We illustrate this by employing one of
the local models for Stranski–Krastanov growth found in the
literature—namely a simplified ‘glued wetting-layer model’
(for details and derivation see [40] (equations (18)–(20))
and [41]). The model assumes an isotropic wetting energy
of the epitaxial film on the solid substrate, which is added to
the (anisotropic) surface energy. Elastic stresses act through a
destabilizing surface stiffness term. It is furthermore assumed
that a given amount of material is deposited on the surface that
then rearranges in a process of self-organization that might
lead to the creation of nano- or quantum dots, i.e. localized
surface structures on the nanometre length scale. In the case of
high-symmetry orientations of a crystal with cubic symmetry
the evolution of the surface profile φ(x, t) is described by
equation (1) when using a small-slope approximation. As the
amount of material is fixed only the conserved part contributes,
i.e. Mc > 0 and Mnc = 0. The model in [40] employs
a constant mobility Mc (corresponding to a constant surface
diffusion coefficient). Non-constant mobilities might as well
be used. Note that a fourth-order kinematic term is omitted in
the evolution equation as it can lead to artefacts if the slope of
the interface is large (inside the small-slope approximation; for
details see [41]). The free energy functional is

F[φ] =
∫ [

−σ

2
(∇φ)2 + ν

2
(
φ)2 + a

12
(∇φ)4

+ f (φ) − μφ

]
dV (4)
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where σ > 0 is the destabilizing surface stiffness resulting
from elastic stresses, ν > 0 represents the energetic cost
of corners and edges, and a quantifies the slope-dependent
anisotropic surface energy (note that we fixed the b of [40]
as b = a/3 to simplify the equation for the present purpose
of comparison). The local free energy f (φ) = ∫

W0(φ) dφ

results from the wetting interaction. Thereby W0 =
−w(φ/δ)−αw exp(−φ/δ), where δ is a characteristic wetting
length, and the positive w and αw characterize the strength
and singularity of the underlying interactions. The singularity
ensures the stability of the stable monolayer between surface
elevations in Stranski–Krastanov growth. Without wetting
interactions the epitaxial film would show Volmer–Weber
growth, i.e. growth would occur in separated islands not
connected by a wetting layer. Note that we here add the last
term to equation (4) where μ is the chemical potential. It does
not affect the evolution equation when Mnc = 0. Related (in
part non-local) equations are employed in [42, 43, 2, 44–46].

If vapour deposition is used to deposit the epitaxial layer
it is to be expected that equation (1) with (4) and Mnc > 0
well describe the process. We are, however, not aware of
such an approach in the literature. Actually, for large chemical
potential μ as compared to the other terms in F (equation (4))
one can even use the system to describe the evolution under
vertical deposition of material. The constant Mncμ does then
correspond to the constant deposition rate in other models
(V in [38]).

Although the overall form of the equation is identical for
the various problems introduced above, the specific physics
is very different. However, one can still employ the same
set of techniques to analyse the various models. Normally,
one uses (i) a linear stability analysis of homogeneous steady
states, i.e. flat films, to determine the stability of the system and
typical length scales that will dominate the short-time evolution
in case the homogeneous state is unstable. (ii) Depending
on the properties of the dispersion relation obtained in the
linear stability analysis one might be able to analytically study
stable and unstable steady state solutions and their stability
in the weakly nonlinear regime. This is, however, often
not possible. (iii) In the strongly nonlinear regime steady
states and their stability might still be obtained, e.g. using
continuation techniques [47, 48]. These are readily available
for two-dimensional systems that can be expressed as ordinary
differential equations [49]. Recently, they were also introduced
for the full three-dimensional problem, in particular for
equation (1) with Mnc = 0 and (3) [50]. Note that variational
methods are apt to obtain the steady states directly from the
functional F , but are not suitable to discuss the stability of
the steady states as this involves dynamic aspects. Many
groups prefer to ‘skip’ step (iii) and rather directly (iv) simulate
the evolution equation in time using advanced numerical
techniques (spectral, pseudo-spectral or semi-implicit).

We remark here that other types of continuum description
exist for all the mentioned systems. Whereas here we
focus on evolution equations for surface or interface profiles,
another class of models describes an interface evolution
using phase fields [51]. See, for instance, for dewetting

and liquid films/drops in general [10] and for epitaxial
growth [52, 43, 2]. We do entirely exclude from our
consideration the vast literature on discrete stochastic models
that exist for dewetting/evaporation processes (e.g. [53–55]) as
well as for surface growth (for reviews see, e.g., [56, 57]).

In the following, we restrict ourselves to two-dimensional
physical situations described by film thickness profiles φ(x, t)
that depend on one spatial coordinate only. The drops or
quantum dots in 2d will actually refer to liquid ridges or
quantum wires in 3d, respectively. We will perform a basic
analysis of linear stability and steady states ‘in parallel’
for a dewetting liquid film on a solid substrate (section 2),
a dewetting evaporating/condensing liquid film on a solid
substrate (section 3) and the epitaxial structuring of a solid
film (section 4). Note that we only review steps (i) and (iii)
of the above introduced scheme that sketches a more complete
analysis of the system behaviour. The next step would be to use
advanced numerical techniques to simulate the evolution of the
films in time for two- and three-dimensional physical settings.
It involves a rather large number of techniques and groups and
we would like to refer the reader to the individual publications
cited in the respective sections below.

Before we start we would like to point out the relevance
of stable and unstable steady state solutions for systems that
evolve in time. Most steady state solutions are either not
linearly stable or do not correspond to the global energetic
minimum that the system will finally approach. Such solutions
are normally not well appreciated in the literature as they
are not present ‘in equilibrium’. They are, however, often
present for a long time in the course of the time evolution
and, due to their character as saddles in function space,
they do often ‘structure’ the evolution towards equilibrium.
Their stability properties (i.e. growth and relaxation rates)
determine timescales for important steps of the dynamics
and, as important transients in experiments of finite duration
they might actually even get ‘frozen in’ or ‘dried in’ as, for
example, in the dewetting of thin polymer films [58, 59]
or suspensions [60, 61], respectively. In this connection,
coarsening, is a particularly interesting issue as in its course
the system ‘passes through’ an infinite number of steady state
solutions that are stable when taking their typical size as a
reference size, but are unstable with respect to modes on larger
length scales, i.e. with respect to coarsening. One could say the
individual solutions do first ‘attract a time evolution’ and then
‘expel it’ along the single unstable direction (corresponding to
coarsening).

2. Dewetting

A dewetting film of non-volatile liquid on a solid substrate is
modelled by equations (1) and (3) with Mnc = 0 [8, 9, 11].
The local energy f (φ) corresponds to a disjoining pressure
�(φ) = −∂φ f (φ) [19, 6, 7]. Various functional forms are
used for f (φ). The particular choice is, however, not very
relevant for the qualitative behaviour of the system. The
latter only depends on the number and relative depth/height
of the extrema of f (φ) − μφ. We choose here f (φ) =
−κ[1/(2φ2)−b3/(5φ5)] as derived by Pismen from a modified
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Figure 1. Dispersion relations for the instability of a flat liquid film
w.r.t. surface modulations resulting in dewetting and the evolution of
patterns of droplets. Shown is a stable and an unstable case in the
generic form β = −k2(k2 − k2

c ), i.e. the growth rate β is scaled by
M0

c γ . The wavenumber is given in units of kc.

Lennard-Jones potential with hard-core repulsion [62–64]. The
resulting f (φ) has only one minimum at a finite φprecursor = b.
The parameter κ corresponds to a typical energy scale. With
the chosen signs the first term corresponds to a destabilizing
long-range van der Waals interaction (i.e. κ is proportional to a
Hamacker constant) whereas the second one represents a short-
range stabilizing interaction. As a consequence, the model may
describe drops of a partially wetting liquid in coexistence with
a precursor film of thickness b. In the following we scale φ by
the precursor film thickness, i.e., we fix b = 1.

If there existed a second minimum at larger finite
thickness it would correspond to a critical height for the
transition between spherical-cap-like drops and pancake-
like drops (e.g. the capillary length when gravity is
included) [6, 65]. For a selection of other pressure terms see,
e.g., [6, 66, 10, 67, 8, 68, 69, 60, 70, 59].

Inspecting equation (1) with Mnc = 0 one notes that any
flat film (thickness φ = φ0) corresponds to a steady state
solution of the system. However, those films might not be

stable. We linearize the system about the flat film employing
harmonic modes, i.e. φ(x, t) = φ0 + ε exp(βt + ikx), where
ε � 1 is the smallness parameter and β the growth rate of
the harmonic mode of wavenumber k. Entering this ansatz in
equation (1) with (3) gives the dispersion relation

β(k) = −M0
c γ k2 (k2 − k2

c ), (5)

where M0
c = Mc(φ = φ0). The critical wavenumber is given

by kc = √−∂φφ f |φ=φ0/γ . For ∂φφ f |φ=φ0 < 0 the film
is linearly unstable for 0 < k < kc. The most dangerous
instability mode, i.e. fastest growing mode, has kmax = kc/

√
2

and βmax = M0
c γ k4

c /4. The onset of the instability occurs
at ∂φφ f |φ=φ0 = 0 with konset

c = 0, i.e. it is a long-wave
instability. Note that mass conservation implies β(k = 0) =
0. Examples of dispersion relations above and below the
instability threshold are given in figure 1.

Steady film thickness profiles are obtained by solving
equation (1) with ∂tφ = 0. Note that in the present setting
this corresponds to δF/δφ = 0 because the first integration
constant (when integrating equation (1)) is zero as we look at
systems without large-scale mean flow. The whole solution
structure might be mapped out in parameter space employing
continuation techniques using analytically or numerically
known solutions to start the continuation [47–49, 11]. Many
parameters might be used as main continuation parameter,
e.g., period or domain size, film thickness, or any parameter
of the energy. Here we only use system size. For a more
detailed explanation of the continuation proceedure for thin
film equations see the appendices of [71, 72].

For a linearly unstable film a one parameter family
of periodic film profiles bifurcates from the flat film at
wavenumber kc as illustrated in figure 2. At the bifurcation
point a steady harmonically modulated surface profile exists
with a period of 2π/kc and an infinitesimally small amplitude.
Using period as main continuation parameter the whole family
of periodic solutions can be obtained. A selection of resulting
film thickness profiles is given in figure 3. We characterize
solutions by their norm ||δφ|| = [(1/L)

∫ L
0 (φ(x)−φ0)

2dx]1/2

and energy per length E = (1/L)
∫ L

0 F[φ] dx . Note that mass

Figure 2. Shown are characteristics of families of steady one-dimensional droplet structures arising in dewetting of a non-volatile liquid using
a simple disjoining pressure. The left panel gives the L2-norm ||δφ|| and the right one the energy F (equation (3)) per length. The legends
give the corresponding mean film thicknesses. The families are obtained using continuation techniques. Note that the solutions are unstable
w.r.t. coarsening.
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Figure 3. Shown are examples of film thickness profiles for the
various branches presented in figure 2. Mean thicknesses φ̄ are
(a) 1.27, (b) 1.5, (c) 2.5 and (d) 5.0. The system size is L = 60 in all
cases. Given are profiles from the following branches: n = 1 (solid
lines), n = 2 (dotted–dashed lines), n = 3 (dashed line), and n = 4
(dotted line). The thin line in (d) corresponds to a nucleation
solution. For given L only the n = 1 profiles are stable
w.r.t. coarsening.

conservation advises us to directly compare only profiles of
identical mean film thickness. This is ensured by μ acting as
a Lagrange multiplier. In consequence, μ changes along the
individual branches in such a way that the mean of φ(x) is
kept fixed.

The resulting branches might bifurcate from the trivial
solution supercritically, i.e., they bifurcate towards the region
of the linearly unstable flat film (forward towards larger
periods; see, e.g., in figure 2 curve for φ0 = 1.5). Or the branch
bifurcates subcritically, i.e., it emerges towards the region of
the linearly stable flat film (backward towards smaller periods;
see, e.g., in figure 2 curves for φ0 = 1.27, 2.5, or 5.0). The
location of the border between sub-and supercritical behaviour
can be determined employing a weakly nonlinear analysis and
can be expressed as an algebraic condition for the 2nd, 3rd and
4th derivative of f (φ) [73].

In the case of the subcritical bifurcation, the subcritical
branch (i.e., between the bifurcation and the saddle-node
bifurcation where it ‘folds back’ towards larger periods)
consists of unstable, nucleation solutions that aquire an
importance for the rupture process of the film if the system
is noisy or ‘dirty’: Note that for the chosen potential f (φ)
there exist no metastable films. However, one may distinguish
two thickness ranges within the linearly unstable range: (i)
the linearly unstable modes are fast and will dominate the
time evolution even in the presence of defects (finite size
perturbations); (ii) the linear modes are slow, and defects—
if there are any present—will dominate the time evolution.
The distinction is related to the existence of the subcritical
branch of unstable solutions. They correspond to nucleation
or threshold solutions as they have to be overcome to break
the film into drops smaller than the critical wavelength of the
linear instability. As they are saddles in function space they can
’organize’ the evolution of defect-ridden thin films by offering

a fast track to film rupture. This allows to determine a typical
time for nucleation events even inside the linear unstable
regime and finally to distinguish the nucleation-dominated
and instability-dominated behaviour of linearly unstable thin
films [74, 24]. A detailed account and comparison to the results
of [75] is found in [76]. Note that similar ideas have since been
applied to the break-up of liquid ribbons [77]. Recently we also
performed a more detailed analysis for a three-dimensional
systems [50, 78].

For unstable flat films of thicknesses φ0 the respective
branches of solutions bifurcating at Lc = 2π/kc shown in
figure 2 are only the first of a respective infinite number of
primary solution branches. These bifurcate at domain sizes
Lcn = 2πn/kc, n = 1, 2, . . .. The branch bifurcating
at Lcn consists of the n = 1 branch ‘stretched in L’ by
a factor n. The actual thickness profiles of the n branch
consist of n identical drops. This representation of the periodic
solutions in dependence on domain size might seem pointless
for the present problem. The reason is that the different
branches are entirely decoupled. As the situation changes
strongly when either looking at other energy functionals
(see below section 4), or when breaking the reflection or
translational symmetry of the system (by including a lateral
driving force [79, 65, 34], substrate heterogeneity [71], or
lateral boundary conditions [80]), it is, however, useful to
introduce the various branches here.

The monotonic decrease of energy (on the low energy
branch) with system size indicates that the system tends to
coarsen towards larger and larger structure size. The steady
solutions on the ‘stable’ branches (the branches of drop
solutions that continue towards infinite period) are stable when
looked at in a domain of the size of their period, but unstable
on larger domains, i.e. they are saddles in function space that
form the ‘stepping stones’ of the coarsening process. They
first ‘attract the time evolution’ and then ‘expel it’ along the
only unstable direction (corresponding to coarsening). The
coarsening behaviour for a dewetting film is discussed in
more detail in [81–84]. Related results for the Cahn–Hilliard
equation are discussed, for example, in [3, 85, 86].

Note that results on the nonlinear stability of flat films and
the related steady state solutions on branches not connected
to the trivial flat film solutions are not discussed here (but
see [76, 34, 11]). For discussions of the evolution in the time of
dewetting films in two- and three-dimensional settings we refer
the reader to [9, 22, 32, 87, 88, 33, 75, 27, 77, 50]. Note finally
that continuation may not only be used to obtain families of
steady or stationary profiles [70, 65, 72, 73, 89], but as well to
track their stability and bifurcations [90, 34, 91, 92].

3. Evaporation

When including evaporation in the presently studied frame-
work one uses equation (1) with the energy functional (3) and
Mnc �= 0. One notes that, unlike the case without evapora-
tion, flat films of arbitrary thickness φ = φ0 do not correspond
to a steady state solution of the system any more. However,

5
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Figure 4. Dispersion relations for the instability of a flat volatile
liquid film w.r.t. surface modulations resulting in the evolution of a
pattern of droplets. Shown are three qualitatively different cases in
the generic form β = −(k2 + M0

nc/M0
c ) (k2 − k2

c ), i.e. we fix
γ M0

c = 1. We furthermore choose M0
nc/M0

c = 1/4.

steady flat film solutions still exist when wettability and evapo-
ration balance. For a given chemical potential the correspond-
ing steady thicknesses are given by

∂φ f |φ=φ0 = μ, (6)

i.e. for the disjoining pressure used here φ0 = [κ(1 ± (1 −
4b3μ/κ)1/2)/2μ]1/3. For condensation (μ > 0) two such
equilibria exist if μ < κ/4b3 whereas for evaporation (μ < 0)
only one thickness exists. Note that this might be different
for qualitatively different disjoining pressures like the one used
in [13]. As above the steady films might be unstable.

We linearize equation (1) with (3) about the flat film of
thickness φ0 given by equation (6) employing harmonic modes
as above to obtain the dispersion relation

β(k) = −M0
c γ

(
k2 + M0

nc

M0
c

)
(k2 − k2

c ) (7)

where M0
nc = Mnc(φ = φ0), M0

c = Mc(φ = φ0) and kc =√−∂φφ f |φ=φ0/γ as without evaporation. As the expression
in the first parentheses is always positive the film is linearly
unstable for ∂φφ f |φ=φ0 < 0 in the wavenumber range 0 < k <

kc. The most dangerous instability mode occurs for kmax =√
(k2

c − M0
nc/M0

c )/2 with βmax = M0
c γ (M0

nc/M0
c + k2

c )
2/4 if

the expression under the square root is positive. Otherwise the
mode with k = 0 grows fastest (β(k = 0) = M0

nck2
c ).

The onset of instability occurs at ∂φφ f |φ=φ0 = 0 with
konset

c = 0, i.e. it is a long-wave instability. Qualitatively
different examples of dispersion relations above and below the
instability threshold are given in figure 4.

As above, steady thickness profiles are obtained by setting
∂tφ = 0 in equation (1). For a linearly unstable film a one-
parameter family of profiles bifurcates from the flat film at kc as
illustrated in the four panels of figure 5. In contrast to the case
without evaporation/condensation here the mean film thickness
changes along the branches whereas the imposed chemical

potential remains constant. A selection of film thickness
profiles is given in figure 6.

Most notably the resulting branches always bifurcate
supercritically from the trivial solution. The results
furthermore indicate that there is no metastable film thickness
range at all, implying that nucleation does not play any role
for a condensing/evaporating film described by the present
disjoining pressure. This, however, needs a deeper analysis in
future, including a comparison of the behaviour for different
pressure terms. Remarkably, the amplitude (droplet height)
approaches a limiting value for a domain size of about 3Lc/2.
As the energy monotonically decreases with domain size we
expect these solutions to be unstable w.r.t. coarsening as the
droplet pattern in the non-volatile case. Note finally that
everything discussed above for non-volatile films regarding the
infinite number of primary solution branches applies as well to
the branches shown in figure 5.

After the short analysis of the volatile and non-volatile thin
liquid film system we next focus on a thin film equation that
describes the evolution of a solid film.

4. Epitaxial growth

The final example is a thin film model for the epitaxial
evolution of surfaces of crystalline solids for a fixed amount
of deposited material that is illustrated here employing a
simplified ‘glued wetting-layer model’ [40]. The evolution
equation (1) describes such a system when combined with the
energy functional (4) and Mnc = 0. As in the case of the non-
volatile liquid film, material is conserved and any flat film of
thickness φ = φ0 corresponds to a steady state solution of the
system.

As those trivial steady states might be unstable we perform
a linear stability analysis along the lines of the previous
sections and obtain the dispersion relation

β(k) = −M0
c νk2(k2 − k2

c1) (k2 − k2
c2) (8)

with

kc1/c2 =
√

σ

2ν

(
1 ±

√
1 − 4ν ∂φφ f |φ=φ0

σ 2

)
. (9)

The film is linearly unstable for ∂φφ f |φ=φ0 < σ 2/4ν

in the wavenumber range kc1 < k < kc2. The
fastest growing mode has the wavenumber kmax =
(σ/3ν)1/2

√
1 + √

1 − 3ν∂φφ f |φ=φ0/σ
2. For values of ∂φφ

f |φ=φ0 < 0 one of the two critical wavenumbers becomes
imaginary, i.e. the film is then unstable for 0 < k < kc2.
Note that the onset of the instability occurs at ∂φφ f |φ=φ0 =
σ 2/4ν with konset

c = √
σ/2ν, i.e. it is a short-wave instability.

Qualitatively different examples of actual dispersion curves
above and below the instability threshold are given in figure 7.

As in the other two cases steady thickness profiles are
obtained by setting ∂tφ = 0 in equation (1). Here they do
not represent profiles of liquid droplets, but profiles of solid
quantum or nano-dots. Due to the higher-order terms in the
energy (4) as compared to the functional (3) studied up to now,
the dispersion curves (figure 7) are qualitatively quite different
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Figure 5. Shown are characteristics of families of steady one-dimensional droplet structures arising in dewetting of a volatile liquid using a
simple disjoining pressure. From top left to bottom right the panels give the L2-norm, the energy F (equation (3)) per length, the mean film
thickness φ̄ and the droplet amplitude. The legends give the corresponding mean film thicknesses for the flat film φ0 at the identical chemical
potential μ. The families are obtained using continuation techniques. Note that the solutions are unstable w.r.t. coarsening.

Figure 6. Shown are examples of film thickness profiles for the
various branches presented in figure 5. Mean thicknesses φ̄ are
(a) 1.27, (b) 1.5, (c) 2.5 and (d) 3.0. The system size is L = 60 in all
cases. Given are profiles from the following branches: n = 1 (solid
lines), n = 2 (dotted–dashed lines), n = 3 (dashed line) and n = 4
(dotted line).

from the ones for dewetting (figure 1). As a consequence we
expect a rather different picture for the steady state solutions
as well. At the parameter values allowing for two critical

Figure 7. Dispersion relations for the instability of a flat epitaxial
film w.r.t. surface modulations result in the growth of quantum dots.
Used here is the simplest model proposed in [40]. The legend gives
the dimensionless value of ∂φ f at φ0. Starting with the lowest one
the three bold curves correspond to the cases studied in figures 4(a),
(b) and (c) of [40].

wavenumbers kc1 and kc2, i.e. for ∂φφ f |φ=φ0 > 0, one finds two
bifurcations from the trivial solutions at domain sizes 2π/kc1

and 2π/kc2, respectively. Near onset one expects the two

7
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Figure 8. Shown are characteristics of families of steady one-dimensional surface structures (quantum dots) arising in epitaxial growth using
the simplest model proposed in [40]. The panels in the left column give the L2-norm and the ones in the right column the energy F
(equation (4)) per length. Parameter values correspond to (top row) figure 4(a), (middle row) figure 4(b) and (bottom row) figure 4(c) of [40].
From top to bottom the non-dimensional wetting interaction increases, leading to more intricate behaviour. The families are obtained using
continuation techniques.

emerging branches to interconnect, as at onset the solution
space should change only locally. Further above onset the
behaviour might, however, be dramatically different. The two
branches bifurcating at 2π/kc1 and 2π/kc2 are the first of two
infinite series of primary solution branches that bifurcate at
respective domain sizes Lc1n = 2πn/kc1 and Lc2n = 2πn/kc2

with n = 1, 2, . . .. This consideration is of importance here, as
the various primary branches may actually couple.

We illustrate the solution structure in figure 8 using
parameter values as in figure 4 of [40]. Shown are the norm
(left column) and energy (right column) of the solutions on the
various branches for three (positive) values of the strength of
the wetting interaction. A selection of film thickness profiles
is given in figure 9. As the strength of the wetting interaction
decreases the system gets deeper into the unstable regime and
the behaviour becomes more intricate. In the upper row of

figure 8 we are slightly above onset and the two n = 1 branches
that emerge at the two zero crossings of the dispersion relation
actually connect, as expected. They are well separated from the
branches with n > 1. Single-quantum-dot (n = 1) solutions
only exist for a small range of periods Lc1 < L < Lc2, i.e. the
system is not able to undergo any coarsening. This corresponds
well to the results obtained in [40] using weakly nonlinear
analysis and integration in time. In the following we will call
the branch emerging at i Lc1 [i Lc2] the left [right] n = i branch.

The picture changes, however, further above onset,
i.e. when decreasing the wetting interactions (middle row of
figure 8). The two n = 1 branches do not interconnect any
more. Actually, the left n = 1 branch continues towards
L = ∞ without any side branches. The left n = 2
branch may change its stability with respect to coarsening
with increasing domain size. Every time it changes stability

8
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Figure 9. Shown are examples of film thickness profiles (φ − φ0) for
the various branches presented in figure 8. The parameters
correspond to (a) the top row, (b) the middle row and (c) the bottom
row of figure 8. The chosen system size is L = 17 in all cases. Given
are profiles from the n = 1+ branch (solid lines), the n = 2+ branch
(dotted–dashed lines), the n = 1− branch (dashed line in (b)) and the
first side branch of the n = 2+ branch (dotted line in (c)) as defined
in figure 8. Mean film thickness is φ0 = 1.75.

a secondary branch bifurcates in a period doubling bifurcation
rather similar to the scenario described for driven liquid films
on inclined plates [34]. The right n = 1 branch connects via
one of the branching points to the left n = 2 branch. The
behaviour becomes increasingly involved for higher branch
numbers.

Decreasing the wetting interaction even more brings the
system further above threshold (bottom row of figure 8). As
kc1 becomes quite small the right n = 1 branch bifurcates at
very large domain sizes. However, the first secondary branch
of the left n = 2 branch now splits up into various pieces that
connect different left branches via secondary bifurcations.

We will at present not go deeper into the analysis. In
particular, no proper stability analysis for the steady states
is done here and, as above, for the dewetting system time
evolution is not touched. Simulations can be found, for
instance, in [42, 40, 2, 44–46]. Note that the results on
stability sketched in the previous paragraph are inferred from
the structure of the bifurcation diagrams alone. They need
to be scrutinized in detail as they are very important for the
coarsening behaviour. The non-monotonic dependence of
energy on system size in figure 8 indicates that coarsening
will depend on structure length in a non-trivial way. The long-
time coarsening for epitaxial growth is discussed, for example,
in [93–95].

The results presented for the glued wetting-layer model
indicate that our knowledge about epitaxial growth would
benefit from a more detailed analysis that maps out the steady
solutions and their stability systematically for the various
models proposed in the literature. Numerical techniques are
available to do this not only for two-dimensional but for three-
dimensional systems as well [50].

5. Conclusion

In the present contribution we have applied a basic mathe-
matical analysis to three different physical systems involv-
ing solid and liquid films at solid surfaces that may undergo

a structuring process by dewetting, evaporation/condensation
or epitaxial growth, respectively. The aim has been to high-
light similarities and differences of the three systems based
on the observation that all of them can be described using
models of similar form, i.e. a time evolution equation for a
purely dissipative system without any inertia based on a gra-
dient dynamics that is characterized by mobility functions
and an underlying energy functional. Thereby the dynamics
might have a non-conserved and/or conserved part. Equa-
tions like the well-known Cahn–Hilliard (purely conserved)
and Allen–Cahn (purely non-conserved) equations represent
limiting cases (with respect to the chosen dynamics) of this
general evolution equation. They are normally used with a par-
ticularly simple form of the energy functional as well.

The three physical systems discussed here all fit into the
general framework when choosing different mobilities and/or
energy functionals. Beside the mathematical similarity the
systems as well model similar physical phenomena as the
respective liquid and solid films structure under the influence
of their effective interactions with the substrate. However,
although most readers will agree that the epitaxial growth of
quantum dots is a subject of surface science, less of them might
do so in the case of a dewetting liquid film. We hope that our
review contributes to the development of a more unified view
onto these processes of self-organization at interfaces.

In particular, we have used two basic steps of
mathematical analysis, namely the study of the linear stability
of homogeneous steady states, i.e. flat films, and the mapping
of non-trivial steady states, i.e. drop/hole (quantum-dot) in
dependence on system size for various values of interaction
constants and/or mean film thickness. Our aim has been
to illustrate that the underlying solution structure might be
very complex as in the case of epitaxial growth but can be
understood better when comparing to the much simpler results
for the dewetting liquid film. We have furthermore shown
that the continuation techniques employed can shed some
light on this structure in a more convenient way than time-
stepping methods. One might further argue that understan
ding the solution structure of the quantum-dot system might
as well allow us to predict pathways of evolution in time for an
epitaxial layer as the behaviour will ultimately be determined
by the steady solutions and their stability. This procedure was
already followed for thin liquid films [74, 71, 96].

The usage of a general formulation like equation (1)
does not only relate seemingly unrelated physical systems
mathematically. It does as well allow us to discuss model
extensions in a more unified way. Taking epitaxial growth
as an example, the general form (1) would propose that
in the non-conserved case, i.e. when material is deposited
from the gas phase continuously the non-conserved part of
the equation should be −MncδF/δφ with F given by (4).
The constant deposition often used in the literature would
then only refer to the limit of a rather large chemical
potential. Oblique deposition of material [38] might as well
be modelled incorporating, besides the vertical influx, lateral
driving contributions as well.

The formulation reviewed here can be extended in
a straightforward way to the case of N coupled fields
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φ = (φ1, φ2, . . . , φN ) following a gradient dynamics that is
governed by an energy functional F[φ1, φ2, . . . , φN ]. The
evolution equation is

∂tφ = ∇ ·
[

Mc · ∇ δF

δφ

]
− Mnc · δF

δφ
(10)

with the Mc(φ) � 0 and Mnc(φ) � 0 being symmetric
positive-definite mobility matrices for the conserved and non-
conserved parts of the dynamics, respectively. They are
formed by N × N mobility functions, respectively. Note that
δF/δφ corresponds to a vector of dimension N . A typical
example is the evolution of a dewetting two-layer system
where the φ1 and φ2 correspond to the two film thicknesses,
respectively. The formulation as a special case of (10) is
derived from the Navier–Stokes equations in the two liquid
layers and appropriate boundary conditions for spatially two-
and three-dimensional settings in [96–99]. The formulation
in the form of equation (10) has the advantage that one can
easily check the consistency of the mobility functions after
a normally rather involved derivation. Furthermore one can
draw on rather general results, e.g. for the linear stability of
flat film solutions [97]. Note that such a formulation will apply
to any multi-layer system in a relaxational setting, including
films of dielectric liquids in a capacitor [100, 101] or multi-
layer pending films under the influence of gravity. We expect
it to hold as well for the relaxation dynamics of multi-layer
epitaxial films.

Let us finally note that we have entirely excluded
spatially heterogeneous systems, i.e. systems described by
equations of form (1) where the energy depends explicitly
on position. Such systems are already treated for dewetting
films [102–104, 17, 82, 71]: however, we are not aware of any
such studies for epitaxial growth. We have as well excluded
laterally driven systems described by equations like (1) that
additionally include lateral driving forces. A comparison of
sliding droplets on an incline [88, 34], a driven (or convective)
Cahn–Hilliard system [79] and epitaxial growth under oblique
deposition might be rather interesting, for instance, in terms
of coarsening behaviour [105, 106, 34, 94]. The combination
of both effects, i.e. heterogeneous systems with lateral driving,
allows us to describe the depinning and stick–slip motion of
droplets [92, 107]. The problems has, up to now, however, no
counterpart in epitaxial growth.
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Steiner U and Russell T P 2001 J. Chem. Phys. 114 2377
[26] Lin Z, Kerle T, Russell T P, Schäffer E and Steiner U 2002
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