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Abstract. A liquid film is studied that is deposited onto a flat plate that is inclined at a constant angle to
the horizontal and is extracted from a liquid bath at a constant speed. We analyse steady-state solutions
of a long-wave evolution equation for the film thickness. Using centre manifold theory, we first obtain an
asymptotic expansion of solutions in the bath region. The presence of an additional temperature gradient
along the plate that induces a Marangoni shear stress significantly changes these expansions and leads to
the presence of logarithmic terms that are absent otherwise. Next, we numerically obtain steady solutions
and analyse their behaviour as the plate velocity is changed. We observe that the bifurcation curve exhibits
collapsed (or exponential) heteroclinic snaking when the plate inclination angle is above a certain critical
value. Otherwise, the bifurcation curve is monotonic. The steady profiles along these curves are charac-
terised by a foot-like structure that is formed close to the meniscus and is preceded by a thin precursor film
further up the plate. The length of the foot increases along the bifurcation curve. Finally, we prove with
a Shilnikov-type method that the snaking behaviour of the bifurcation curves is caused by the existence
of an infinite number of heteroclinic orbits close to a heteroclinic chain that connects in an appropriate
three-dimensional phase space the fixed point corresponding to the precursor film with the fixed point

corresponding to the foot and then with the fixed point corresponding to the bath.

1 Introduction

Spreading liquids on a surface by pulling a plate out of a
liquid bath is a well known coating process used for indus-
trial applications [1]. In order to gain control over the coat-
ing process, this problem has been studied from an experi-
mental point of view, see, e.g., refs. [2-7], and also theoret-
ically, see, e.g., refs. [5,8-12]. Landau and Levich [8], for
example, analysed liquid films of constant thickness coat-
ing a vertical plate extracted from a bath of liquid at low
velocities and found that the film thickness scales as U?/3,
where U is the velocity of the plate. The asymptotic result
of Landau and Levich was improved by Wilson [11]. Non-
Landau-Levich-type solutions, which satisfy other scaling
laws, were also found, see, for example, refs. [5,13-16].
In particular, multiple non-Landau-Levich type solutions
were previously observed by Miinch et al. [16] for certain
parameter values in a similar system, where the role of
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the plate withdrawal is taken by a Marangoni shearing
induced by a constant temperature gradient on the plate.
Related behaviour is also found in coating problems in-
volving complex fluids. A particular example is the depo-
sition of line patterns in the process of Langmuir-Blodgett
transfer of a surfactant layer from a bath onto a mov-
ing plate [17,18]. For this system a reduced Cahn-Hilliard
type model was employed to show that the deposition of
lines is related to local and global bifurcations of time-
periodic states from a snaking bifurcation curve of steady-
state front solutions [19], that in the light of the present
work may be seen as a case of heteroclinic snaking (also
cf. review [20] where this is set into the wider context of
deposition patterns).

In the present study, we do not consider Landau-Levich
solutions where the thick drawn film directly connects to
the meniscus of the bath. Instead we focus on a different
type of thickness profiles which show a foot-like structure
of characteristic thickness hy close to the meniscus that
is preceded by a very thin precursor film of characteris-
tic thickness h, further up the plate. They were recently
described for a slip model [5,12]. We show that for the
precursor film model (as known in case of the slip model)
at inclination angles o below a critical value ., the foot
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Table 1. Hierarchy of systems exhibiting collapsed (or exponential) snaking behaviour.

Authors

Description of scenario

# fixed points

Shilnikov [21]
Glendinning and Sparrow [22]

Infinite number of periodic orbits

approaching a homocline

1 fixed point

J. Knobloch and Wagenknecht [23]
Ma, Burke and E. Knobloch [24]

Infinite number of homoclines

approaching a hetereoclinic cycle

2 fixed points

Present study

Infinite number of heteroclines

approaching a hetereoclinic chain

3 fixed points

shape is monotonic while for a > «, there exist undula-
tions on top of the foot. In both cases we observe that
for each inclination angle foot solutions exist when the
plate velocity is close to a certain limiting velocity, and the
closer the bifurcation curve approaches this limiting value,
the larger the foot length becomes. The analysis of the bi-
furcation diagrams of foot solutions for a suitable solution
measure, shows that this classical physico-chemical prob-
lem turns out to be a rich example to illustrate collapsed
(or exponential) heteroclinic snaking near a hetereoclinic
chain'. We demonstrate that the three regions of the liquid
film profile, namely, the precursor film, the foot and the
bath, can be considered as three fixed points y,, y¢ and
yp of an appropriate three-dimensional dynamical system.
The steady film profiles are then described by heteroclinic
orbits connecting points y, and y;. Then, we show that
the collapsed heteroclinic snaking observed in the dragged
meniscus problem is caused by a perturbation of a hetero-
clinic chain that connects y, with y; and y; with y, that
exists for certain parameter values, provided that fixed
points y, and y; have two-dimensional unstable and two-
dimensional stable manifolds, respectively, and that the
fixed point y; is a saddle focus with a one-dimensional
stable manifold and a two-dimensional unstable manifold.

Note that related collapsed snaking behaviour has been
analysed in systems involving either one fixed point [21,
25,22] or two fixed points [23,24]. Table 1 illustrates that
our results form part of a hierarchy of such snaking be-
haviours: Shilnikov (see refs. [21,25]) analyses homoclinic
orbits to saddle-focus fixed points in three-dimensional
dynamical systems that exist for some value gy of a pa-
rameter § and demonstrates that if the fixed point has a
one-dimensional unstable manifold and a two-dimensional
stable manifold, so that the eigenvalues of the Jacobian at
this point are Ay and —A2 +iw, where Ay » and w are pos-
itive real numbers, and if the saddle index 6 = Ay /A < 1,
then in the neighbourhood of the primary homoclinic orbit
there exists an infinite number of periodic orbits that pass
near the fixed point several times. Moreover, the differ-
ence in the periods of these orbit tends asymptotically to
7 /w. The perturbation of the structurally unstable homo-

! We introduce the term “collapsed heteroclinic snaking” to
indicate that the corresponding bifurcation diagram consists
of a snaking curve of heteroclinic orbits that is collapsed (ex-
ponentially decreasing snaking amplitude) in the sense used in
ref. [24] for homoclinic orbits close to a heteroclinic chain that
connects two fixed points in a reversible system.

clinic orbit leads to a snaking bifurcation diagram showing
the dependence of the period of the orbit versus the bi-
furcation parameter 3. This diagram has an infinite but
countable number of turning points at which the periodic
orbits vanish in saddle-node bifurcations. However, if the
saddle index is greater than unity, then the bifurcation di-
agram is monotonic. Knobloch and Wagenknecht [23,26]
analyse symmetric heteroclinic cycles connecting saddle-
focus equilibria in reversible four-dimensional dynamical
systems that arise in a number of applications, e.g., in
models for water waves in horizontal channels [27] and
in the study of cellular buckling in structural mechan-
ics [28]. In these systems the symmetric heteroclinic cy-
cle organises the dynamics in an equivalent way to the
homoclinic solution in Shilnikov’s case. It is found that
a necessary condition for collapsed snaking in such four-
dimensional systems is the requirement that one of the
involved fixed points is a bi-focus [23]. Then there exists
an infinite number of homoclines to the second involved
fixed point that all pass a close neighbourhood of the bi-
focus. The presently studied case is equivalent to the cases
of Shilnikov and of Knobloch and Wagenknecht, however,
here a heteroclinic chain between three fixed points forms
the organising centre of an infinite number of heteroclines.
The rest of the paper is organised as follows. In sect. 2,
we introduce the model equation. In sect. 3, we analyse
asymptotic behaviour of solutions in the bath region. In
sect. 4 we present numerical results for the steady states
and their snaking behaviour in the cases without and with
Marangoni driving. Section 5 is devoted to an analyti-
cal explanation of the bifurcation diagrams obtained in
sect. 4. Finally, in sect. 6 we present our conclusions.

2 Model equation

We consider a flat plate that forms a constant angle with
the horizontal direction and that is being withdrawn from
a pool of liquid at a constant speed. A schematic repre-
sentation of the system is shown in fig. 1. We introduce a
Cartesian coordinate system (z, z) with the z-axis point-
ing downwards along the plate and the z-axis pointing up-
wards and being perpendicular to the plate. We assume
that the free surface is two-dimensional, with no variations
in the transverse direction. The position of the free surface
is given by the equation z = h(z, t), where ¢ denotes time.
As a model equation governing the evolution of the free
surface, we use a long-wave equation derived in refs. [29,
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Fig. 1. Sketch of the problem: Upper panel: An infinitely ex-
tended flat plate inclined at an angle « is withdrawn at a con-
stant speed U from a bath of a partially wetting liquid. Lower
panel: Definition of the precursor film height, h;,, and the foot
film height, hy, for a typical film profile.

30] from the Navier-Stokes equations and the correspond-
ing boundary conditions under the assumptions that the
physical plate inclination angle is small and the typical
longitudinal length scale of free-surface variations is large
compared to the typical film thickness:

ouh = —0, (f@m[ﬁih + IT(h)]
3
—%G(@zh—a) - gh> (1)

Here o, U and G are the scaled inclination angle of the
plate, the scaled plate velocity and the scaled gravity, re-
spectively, and the symbols 0; and 9, denote partial differ-
entiation with respect to ¢ and z, respectively. Note that
the scaled angle a as well as the scaled equilibrium contact
angle are O(1) quantities. On the right-hand side, —92h
represents the Laplace pressure, I1(h) represents the Der-
jaguin or disjoining pressure (that we will discuss in detail
below), the term G3,h is due to the hydrostatic-pressure,
—Ga is due to the z-component of gravity and the last
term is due to the drag of the plate.

The interaction between the plate and the non-volatile
partially wetting liquid is modelled via the disjoining pres-
sure, which has the dimensional form

~ - ~ ~ A B
H(h):H1(h)+H2(h):—ﬁ+ﬁ (2)
consisting of a destabilising long-range van der Waals in-
teraction, IT;(h) = —A/h3, and a stabilising short-range
interaction, Ils(h) = B/h®. Here h is the dimensional film
thickness, and A and B are the Hamaker constants. For A
and B positive, on a horizontal plane the disjoining pres-
sure describes partial wetting and characterises a stable
precursor film of thickness

heq = (B/A)'/? (3)
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that may coexist with a meniscus of finite contact angle

3 A
Oog = 1| = — | 4
q 5’thq ()

where 7y is the surface tension coefficient (see refs. [30-33]
for background information and details).

Equation (1) has been non-dimensionalised using ¢ =
\/3/5 heq/b0cq as the length scale in the z-direction, heq as
the length scale in the z-direction and 7=(9nheq) /(25704
as the time scale, where 7 is the viscosity of the liquid.
Note that with this non-dimensionalisation the dimension-
less disjoining pressure has the form

1 1

H(h)zﬂl(h)+ﬂ2(h):*ﬁ+ﬁ~ (5)

The scaled velocity, gravity number and the inclination
angle are given by
37 pghd, ¢
o)

UZT’U/, G= A

respectively, where p is the density of the liquid and g is
gravity and u and & are the dimensional plate velocity and
the small physical plate inclination angle, respectively.

Note that additional physical effects can be included
into the model presented above. One extension that is in-
teresting for reasons that will become clear later, is the
inclusion of a term quadratic in A in the flux on the right-
hand side of eq. (1). This can be obtained, for example, by
assuming that there is an additional constant temperature
gradient along the plate, see refs. [16,34-36] for more de-
tails. Inclusion of this effect into the present model results
in

3
Oth = —0, (%&c [02h + II(h))]
h? 0, U

where {2 is a dimensionless number representing the tem-
perature gradient along the plate.

Finally, we discuss boundary conditions. First, we as-
sume that h tends to an undetermined constant value
(e.g., at equilibrium the precursor film thickness) as = —
—oo and its derivatives tend to zero as x — —oo. Sec-
ond, we assume that h, = a + o(1) as x — oo, which
means that the slope of the free surface of the bath ap-
proaches the horizontal direction far away from the plate.
The asymptotic behaviour of h as  — oo will be analysed
in more detail in the next section.

3 Asymptotic behaviour of solutions at
infinity
In what follows, we will analyse steady-state solutions of

eq. (7), i.e., solutions that satisfy the equation
R3[W" + II(h)] — Gh3(h' —a) — 2h? —Uh+Cy =0, (8)
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where now h is a function of x only and primes denote
differentiation with respect to z. Here, Cy is a constant of
integration and represents the flux. Note that Cj is in fact
not an independent parameter but is determined as part of
the solution of the boundary-value problem consisting of
eq. (8) and four boundary conditions that will be discussed
in the next section.

Following a proposal of ref. [16], we introduce variables
y1 = 1/h, yo = I/ and y3 = h”, and convert the steady-
state equation (8) into a three-dimensional dynamical sys-
tem

YL = —yiye, (9)

Ys = Y3, (10)
ys = (6y] — 3y1)y2 + Gyz + Uy}

+02y, — Coy} — Gov. (11)

Note that the transformation y; = 1/h is used to ob-
tain a new fixed point corresponding to the bath, namely
the point y, = (0, a, 0), beside other fixed points, two
of which, yy = (1/hy, 0, 0) and y, = (1/hy, 0, 0), cor-
respond to the foot and the precursor film, respectively.
For a more detailed analysis of the fixed points, see the
beginning of sect. 5.

To analyse the stability of the fixed point y;, we first
compute the Jacobian at this point:

000
001
G0

Iy, = (12)

The eigenvalues are 0, =G'/? and the corresponding
eigenvectors are (G, —£2, 0), (0, £G~'/2,1). So there is
a one-dimensional centre (or critical) eigenspace, a one-
dimensional stable eigenspace and a one-dimensional un-
stable eigenspace given by

T, = span{(G, —£2, 0)}, (13)
T,;b = span{(07 _G_1/27 1)}: (14)
T, = span{(0, G 1/2, 1}, (15)

respectively.

To determine the asymptotic behaviour of h as z — oo,
we analyse the centre manifold of y;, which we denote by
Wy, - This is an invariant manifold whose tangent space at
yp is Ty, . The existence of a centre manifold is provided
by the centre manifold theorem (see, e.g., theorem 1, p. 4
in ref. [37], theorem 5.1, p. 152 in ref. [38]). For simplicity,
we use the substitution zy = y1, 20 = y2 — a, 23 = y3. In
vector notation, the dynamical system takes the form

z' = f(2), (16)

where f(z) = (f1(2), f2(2), f3(2))" and
f1(2) = fi(z1, 22, 23) = =27 (22 + @), (17)
f2(2) = fa(21, 22, 23) = 23, (18)

f3(2) = f3(21, 22, 23) = (62] — 321) (22 + @) + Gz

+UZ2 4+ Nz — Coz. (19)
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The fixed point corresponding to the bath is then z, =
(0, 0, 0). Next, we rewrite the system of ordinary differ-
ential equations (16) in its eigenbasis at zyp, i.e., we use
the change of variables u = B~ !z, where B is the matrix
having the eigenvectors of the Jacobian as its columns,

G 0 0
B= |-G Y2 _Gg1/? (20)
0 1 1
and obtain the system
u' =g(u) = B~ f(Bu), (21)
which can be written in the form
5, = ¢(£7 77)» (22)
n' =Cn+e(&n), (23)

where ¢ denotes the first component of w and n =
(01, m2)T consist of the second and the third components
of u (i.e., &€ = uy, m = ug and 72 = ug), ¥ and ¢ have
Taylor expansions that start with quadratic or even higher
order terms and C' is the matrix

G2 0
C == < O —G1/2> . (24)
After some algebra, we find
(&,m) = GRE — Gag? — G2y + G2, (25)

01(6,m) = —3GTREE + 3Gl + 3Gy,
—3G"2Tn, + g G'E — %G‘*a ¢
3 7/2¢4 3 7/2 ¢4 1 3.3
—5 G A 5 G — 5 CoGTE
% G2 — %GB/QQaﬁ + % UG2¢?

1 1
-5 G0 Em+ 3 GREny, (26)

pa(&,m) = =GV —3G702€ +3GTal”
43 G13/2§7771 _ 3G13/2£7772 + g G4Q§5

3 3 3
-5 Glag - 5 G4y, + 5 G2 ¢4y,

1 a.a 1 1
—5 GG — DGO+ S G Rag?

% UG2e? + % GOy — %Grzg?n, (27)

Near the origin, z,, when [§| < ¢ for some posi-
tive d, the centre manifold in the (&, 71,7n2)-space can
be represented by the equations m = ¢1(§), 12 = ¢2(&),
where g; and go are in C2. Moreover, near the origin sys-
tem (22), (23) is topologically equivalent to the system

& =& 9(9),
n' = Chn,
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where the first equation represents the restriction of the
flow to its centre manifold (see, e.g., theorem 1, p. 4 in
ref. [37], theorem 5.2, p. 155 in ref. [38]).

The centre manifold can be approximated to any de-
gree of accuracy. According to theorem 3, p. 5 in ref. [37],
“test” functions ¢; and ¢o approximate the centre mani-
fold with accuracy O(|£]9), namely

l91(6) =1 = O(Ig]?),  192(8) —d2(&) = O([¢]*) (30)

as £ — 0, provided that ¢;(0) =0, ¢;(0) =0, ¢ = 1, 2 and
Mo](€) = O(|¢|?) as & — 0, where M is the operator
defined by

M([9](§) = ¢ () (&, d(8)) — Ch(&) — (&, D(€))- (31)

The centre manifold can now be obtained by seeking for
d1(§) and ¢2(§) in the form of polynomials in £ and re-
quiring that the coefficients of the expansion of M[¢](£)
in Taylor series vanish at zeroth order, first order, second
order, etc. Using this procedure, we can find the Taylor
series expansions of g; and go

1 1.
gl(f)—<2 Ga— G“/zU) &
1 1
+ <G2Ua —G320a% - 3 G2? + 3 G5/2C’0> &
3 3 2 3 3 2 5/2 2
- iG aCy— 3G a Q+§G U —-3G°"*a*U

—gG7/2a— gGS/Qa 92)§4+--~ : (32)
1 L /2 2
p(O)=( 5 GRa+ 5 GPU ¢
+ (G2Ua +G¥20a% - %GQQ - ;Gf’/?co) &
3 3 2 3 5/2 2 3 2
—( 3G Co =360 3G + S G QU

+g G+ gGS/Za 92>54+--~. (33)
Let gi(k)(g), i =1, 2, be the Taylor polynomial for g;(§) of
degree k. Then g;(€) = ¢ (€) + O(|¢[F*+1), i = 1, 2, and

M[g®](&) = O(|¢]**1) as € — 0. The dynamics on the
centre manifold is therefore governed by the equation

¢ =& g™ (©) + O(l¢F )
= GOE — Gag® - G2 (¢)
+GY2624{0 (¢) + O(J€[F+%). (34)
Substituting eq. (32) and eq. (33) into eq. (34), we find
£ = —Ga® + GNE + UG — (CoG® — 2G22a>)&E°
+(6G3Ua? — 3G a — 5G2Q2%)E5 + - - - . (35)
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Taking into account the fact that £ = 21 /G, we obtain

. U Co 20?2
% = oz + Ezf EZ? B (EO B T)Z?
6U a2 3 5%«
+<G2 aive il )z?+--~. (36)

Rewriting this in terms of h, we get

2
L (CO - mo‘)h?’

G G G G?
6Ua?  3a 50%a\, ,
NN

as h — oo.

We seek for a solution for h whose slope approaches
that of the line corresponding to the horizontal direction
as © — 00. In the chosen system of coordinates, the line
corresponding to the horizontal direction has the slope a.
So we seek for a solution satisfying h'(z) = o + o(1) as
x — o0. This can also be written in the form

hz)=ar+o(z) as x— oo. (38)
Substituting eq. (38) into eq. (37), we obtain
h=a-— %x_l +o(xh), (39)
which implies
h=ax— 2 log z + o(log z). (40)

aG
Substituting eq. (40) into eq. (37), we find

92
Ca3G2?

h=a- ﬁx_l

aG

which implies

z %logz 4 o(z?logx), (41)

2

a3G?

h=oax— £loggﬁ—}— z  oga +o(x tlogx). (42)
aG
In principle, any constant of integration can be added
to this expression, and this reflects the fact that there
is translational invariance in the problem, i.e., if h(z) is a
solution of eq. (8), then a profile obtained by shifting h(z)
along the z-axis is also a solution of this equation. With-
out loss of generality, we choose the constant of integration
to be zero, which breaks this translational invariance and
allows selecting a unique solution from the infinite set of
solutions.
Substituting eq. (42) into eq. (37), we find

N 22
h/ = — E.’I)_l — m$_2 logx
U 03
—TGx’Q T 3 log? x
« «
3

+ x*logx + o(z™ 3 log z), (43)

abG3
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Fig. 2. Left panel: Comparison between a numerical solution for {2 = 0 when o« = 0.5 and U = 0.084 and the expansion for
h(z) given by eq. (46) with 1-4 terms. Right panel: Comparison between a numerical solution for 2 = 0.001 when o = 0.5 at
U = 0.076 and the expansion for h(x) given by eq. (44) with 1-5 terms. L; = 9800, Lo = 200.

which implies

n 2
h:O‘I*EIOgIJraTGgI log x (44)
+ e T
a3G2 T a2G )"
P 5 —2
z “log”z + o(z” " logx). (45)

- 2a5G3

The procedure described above can be continued to obtain
more terms in the asymptotic expansion of h as z — oo.
Note that all the terms in this expansion, except the first
two, will be of the form =™ log" z, where m is a positive
integer and n is a non-negative integer. It should also be
noted that the presence of the logarithmic terms in the
asymptotic expansion of h is wholly due to the quadratic
contribution to the flux in eq. (7) that here results from a
lateral temperature gradient. Without this term, i.e., for
£2 =0, the expansion (37) for h’ does not contain the term
proportional to h~!. This implies that after substituting
h(z) = ax + o(x) in this expansion, no term proportional
to z~! will appear, and, therefore, integration will not
lead to the appearance of a logarithmic term. In fact, it
is straightforward to see that for {2 = 0 an appropriate
ansatz for h is

h~ax+ Dz~ + Dox 2+ Dyz™3 4 | (46)
implying that
U Co
Dy = 2@’ D2 = 203G
1/ 202 3 6U
Dy=—= - : A7
3 3 (a5G RPTe a2G2) (47)

Note that the presence of a logarithmic term in the
asymptotic behaviour of h was also observed by Miinch
and Evans [16] in a related problem of a liquid film driven
out of a meniscus by a thermally induced Marangoni shear
stress onto a nearly horizontal fixed plane. They find the

following asymptotic behaviour of the solution, given with
our definition of the coordinate system

h(z) ~ ho(x)+ Do+ Dy exp(=DY%z) as x — oo, (48)

where hg = x/D —logz + o(1), D is the parameter mea-
suring the relative importance of the normal component
of gravity and Dy and D; are arbitrary constants. The
constant Dg reflects the fact that there is translational in-
variance in the problem and it can be set to zero without
loss of generality. An analysis performed along the lines
indicated above shows that a more complete expansion
has the form

h(z) ~ % —logz + Dz 'logx + Dz~ !

D? 5 o
+?$ log”z +---. (49)
Note that there is no need to include the exponentially
small term as it is asymptotically smaller than all the
other terms of the expansion.

4 Numerical results

In this section, we present numerical solutions of eq. (8).
We solve the equation on the domain [—Ly, Lo]. At =
—Ly, we impose the boundary conditions h'(—L;) = 0
and h"(—Ly) = 0. At © = Ly, we impose the boundary
condition obtained by truncating the asymptotic expan-
sion (44) for 2 # 0 or (46) for 2 = 0 and evaluating it at
x = Ly. We additionally impose a condition for the deriva-
tive of h at Ly obtained by differentiating the asymptotic
expansion for h and evaluating it at @ = Lo. To solve this
boundary-value problem numerically, we use the contin-
uation and bifurcation software AUTO-07p (see refs. [39,
40]). A description of the application of numerical contin-
uation techniques to thin film problems can be found in
sect. 4b of the review in ref. [41], in sect. 2.10 of ref. [30],
and in refs. [42-44]. We perform our numerical calcula-
tions on a domain with L; = 9800 and Lo = 200 and
choose G = 0.001.
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In fig. 2, we compare the numerical solutions with the
derived asymptotic expressions for h as x — oo, when the
inclination angle is @ = 0.5. In the left panel, {2 = 0 and
U = 0.084. The solid line shows a numerically computed
profile, in which we can identify three regions, namely, a
thin precursor film, a foot, and a bath region. We also
show the truncated asymptotic expansion (46) with one,
two, three and four terms included, as is indicated in the
legend. In the right panel, 2 = 0.001 and U = 0.076.
The solid line shows a numerically computed profile, the
remaining lines correspond to the truncated asymptotic
expansion (44) with one, two, three, four and five terms
included, as is indicated in the legend. In both cases,
we can observe that the numerically computed profiles
agree with the derived asymptotic expansions and includ-
ing more terms gives better agreement.

In fig. 3, we present bifurcation diagrams showing the
dependence of a certain solution measure quantifying the
foot length on the velocity of the plate for 2 = 0. More
precisely, the measure is defined by iy = (V — Vo) /(hy —
hy), where V = fle(h(x) — hp)dz, hy is the character-
istic foot height, h, is the precursor film height for the
corresponding velocity, and V; is equal to V' computed at
U =0.

We observe that there is a critical inclination angle,
a. ~ 0.1025, such that for @ < a, the bifurcation curve
increases monotonically towards a vertical asymptote at
some value of the velocity, which we denote by U,,. This
can be observed in the left panels of fig. 3 when o = 0.1.
When a > a., we observe a snaking behaviour where the
bifurcation curve oscillates around a vertical asymptote at
U = Uy, with decaying amplitude of oscillations. This can
be observed in the right panels of fig. 3 when a = 0.5. We
note that in this case there is an infinite but countable
number of saddle-nodes at which the slope of the bifurca-
tion curve is vertical.

Note that U, is different for each inclination angle.
The character of the steady solutions is discussed below
in fig. 6.

We note that in the case with an additional temper-
ature gradient (2 # 0) we observe qualitatively similar
bifurcation diagrams. If an inclination angle is below a
critical value (which now depends on (2), then the bifur-
cation diagrams are monotonic. Otherwise, the bifurcation
diagrams show snaking behaviour, as for the case of zero
temperature gradient. An example of snaking bifurcation
curves for a = 0.5 and {2 = —0.001, 0 and 0.001 is given
in fig. 4, and the corresponding bifurcation curves are
shown by dashed, solid and dot-dashed lines. We can ob-
serve that as the temperature-gradient parameter (2 is
increased /decreased, the vertical asymptote is shifted to
the left/right. We can also conclude that if the temper-
ature gradient pulls the liquid downwards, steady-state
solutions of this bifurcation branch exist for larger val-
ues of U. Otherwise, if the temperature gradient pulls the
liquid upwards, steady-state solutions of this bifurcation
branch exist for smaller values of U. The right panel of
fig. 4 shows three profiles for I; = 300 by dashed, solid
and dot-dashed lines for 2 = 0.001, 0 and —0.001, re-
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Fig. 3. Comparison of bifurcation diagrams for two inclination
angles as stated in the panels in the case without temperature
gradient ({2 = 0). Top: Left panel: Asymptotic monotonic in-
crease of the foot length [; towards the vertical asymptote at
U = U as a function of the plate velocity U for o = 0.1,
which is below a.. Right panel: Snaking behaviour of the foot
length [y where the bifurcation curve oscillates around a ver-
tical asymptote at U = U with decaying amplitude of os-
cillations as a function of the plate velocity U for a = 0.5,
which is above a.. Note the appearance of pairs of saddle
nodes (the first being at U,) where the system successively
switches branches and “snakes” around U,,. Bottom: In order
to illustrate the different behaviour for angles below and above
ac, we show the foot-length measure Iy versus |U — U] in a
semi-log plot. Left panel: The semi-log plot shows an asymp-
totic monotonic growth in U. Right panel: An exponential—
oscillating periodic decay is clearly shown. A periodic structure
with a snaking wavelength A; and an exponential decay rate
vs appears after U, (bifurcation: appearance of the first saddle
node).

spectively. We observe that the foot height decreases as {2
decreases.

In order to illustrate the different behaviour for an-
gles below and above «,., we also show the foot length
measure, lf, versus U — Us| in a semi-log plot, see the
lower left and right panels of fig. 3 for « = 0.1 and
a = 0.5, respectively. For a = 0.1, it can be clearly
seen that the bifurcation curve approaches the vertical
asymptote exponentially with a rate which we denote by
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Fig. 4. Left panel compares bifurcation diagrams for different temperature gradients {2 as shown in the legend for an inclination
angle a = 0.5. The green filled circles indicate the points at which {; = 300 and the corresponding film profiles are shown in
the right panel. Note that the snaking behaviour is present. The temperature gradient {2 shifts the vertical asymptote at Uso
and changes the characteristic foot height at Us.
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Fig. 5. Film profiles at plate velocity Us for o = 0.5. Left panel: Bifurcation diagram. The red filled circles correspond to
film solutions at plate velocity Us. The inset shows a blow-up of the region with the first five solutions. Note the appearance
of a characteristic snaking behaviour around Us. The letters in the inset correspond to the film profiles depicted in the right
panel. Note the appearance of undulations on top of the foot-like part of the solution as the foot becomes longer. The numerical
domain size used is L = 10000, L; = 9800. Note that the first profile (a) corresponds to a meniscus solution. It is located on the
lowest branch before the bifurcation curve folds back at Uy (the green square). The red dashed line indicates a linear increase
in foot length.
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Fig. 6. Film profiles below and above a. given as solid and dashed lines, respectively. Left panel: Shown are film profiles for
a = 0.1 close to Uss and for o = 0.5 at Us. Right panel: In order to show the appearance of undulations on top of the foot
above a., we represent in bottom panels |h(x) — hy| versus (x + L1)/L in a semi-log plot, where L; = 9800, L = 10000 is
the numerical domain size and hy is the characteristic foot height calculated for each inclination angle o by solving eq. (8) for
h =0,h" =0and b’ =0 (using the numerically obtained value of the flux Cp). Observe the exponential approach with rate
vm of the foot height from the bath side, and as well the exponential departure with rate vg from the foot height towards the
precursor film (see main text for details). Note that the measured foot wavelength is Ay = Ay¢L.

vs. For a = 0.5, we can see that the approach of the verti-
cal asymptote is exponential with the snaking wavelength
tending to a constant value, which we denote by As,.

Figure 5 shows the identified snaking behaviour for
a = 0.5 in more detail. In the left panel, we see the bi-
furcation diagram where the red filled circles correspond
to solutions at Us. In the chosen solution measure, the
solutions appear equidistantly distributed. In the inset,
the first five solutions are indicated and labeled by (a)-
(e) and the corresponding film profiles are shown in the
right panel. The dashed line in the right panel confirms
the linear growth of the foot length.

The differences in film profiles for angles below and
above a. can be seen in fig. 6 that shows solutions for
velocities close to Uy, for o = 0.1 and at U, for 0.5 by
solid and dashed lines, respectively. In the left and the
right panels, we compare short-foot and long-foot solu-
tions, respectively, with similar foot lengths. To emphasise
the differences, we represent the profiles in a semi-log plot
|h(x) — hy| versus (x + Ly)/L in the bottom panels. For
a = 0.1 we see no undulations —only exponential decays
at a rate denoted by g, from the bath to the foot and at
a rate denoted by vg from the foot to the precursor. How-
ever, for a = 0.5 we observe an oscillatory exponentially
decaying behaviour at a rate denoted by vg, with a wave-
length denoted by Ay in the region between the bath and

the foot. In the region between the foot and the precursor
film, we again observe an exponential decay.

Figures 3 to 5 allow us to recognise the observed be-
haviour as collapsed heteroclinic snaking (see footnote 1):
The bifurcation curve in fig. 5 is a snaking curve of het-
eroclinic orbits, i.e., each point on the curve represents a
heteroclinic orbit connecting the fixed points for precursor
film y, and bath surface y;, of the dynamical system (9)-
(11), namely, if h, and hy are the heights of the precursor
film and the foot and « is the inclination angle, then the
fixed points are y, = (1/hyp, 0, 0) and y, = (0, v, 0), re-
spectively. In the limit U — U, the curve approaches a
heteroclinc chain consisting of two heteroclinc orbits —
one connecting the fixed points precursor film y, and foot
ys = (1/hy, 0, 0) and the other one connecting foot yy
and bath yp. Figure 5 (left) shows the first 5 heteroclinic
orbits connecting y, and y, —all at U = Uy In sect. 5 it
is proved that at U = U, there exists a countable infinite
number of such heteroclinic connections.

The values of hy, and hy at U = Uy, are shown in fig. 7
as functions of « by dashed and solid lines, respectively.
In fig. 8, we show the dependence of the eigenvalues of the
Jacobians of system (9)-(11) at fixed points y, and yy at
U = Uy as functions of « (also cf. beginning of sect. 5).
We note that for the precursor film all the eigenvalues are
real, two of them are positive and one is negative indepen-
dently of the angle. We denote these eigenvalues by A ;,
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hp, (y1p = 1/hy), and foot film height, hy, (y1y = 1/hy), ver-
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to the precursor film, the right side corresponds to the foot.
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Fig. 8. Eigenvalues at corresponding Us for each a. Upper
panel: Shown are the three eigenvalues A\, versus « for the
fixed point corresponding to the precursor film. Note that all
the eigenvalues are real. Middle and bottom panels: Shown
are the real and the imaginary parts, respectively, of the three
eigenvalues Ay versus a for the fixed corresponding to the foot.

i = 1, 2, 3. However for the foot, the behaviour of the
eigenvalues changes for angles below and above a critical
value and it turns out that this critical angle is the same as
the critical angle at which monotonic bifurcation diagrams
change to snaking, i.e., a. ~ 0.1025. We observe that for
a < a. all the eigenvalues for the foot are real —two are
positive and denoted by Af; and Ay so that Agq < Ago
and one is negative and is denoted by A 3. However, for
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Table 2. Eigenvalues at fixed point yy = (y15, 0, 0) with
y1r = 1/hs for o = 0.1 close to Us and for @ = 0.5 at Us.
Note that all the eigenvalues are real for a = 0.1, whereas
for & = 0.5 one eigenvalue is real and negative and two are
complex conjugates with positive real parts. See fig. 8.

o hy yir | Asa Ar2 Ar3

0.1 | 19.3732 | 0.0516 | 0.0173 0.0188 —0.0361

0.5 | 12.3922 | 0.0807 | 0.0263 0.0263 —0.0525
+i0.0346 | —i0.0346

Table 3. Shown is the comparison of the exponential decays
vg, Ve with the eigenvalue v from the linear stability analysis
for a« = 0.1 close to U and for @ = 0.5 at Uy for solutions
with a short foot. See fig. 6.

le% v = ReP\f’g] Vtt V= RE[)\f,l] Vth
0.1 —0.0361 —0.0403 0.0173 0.0152
0.5 —0.0525 —0.0497 0.0263 0.0278

Table 4. Shown is the comparison of the exponential decays
vg, Ve with the eigenvalue v from the linear stability analysis
for « = 0.1 close to Us and for o« = 0.5 at Uy for solutions
with a long foot. See fig. 6.

a | v=TRe[Af3] Ut v = Re[Af1] U
0.1 —0.0361 —0.0356 0.0173 0.0155
0.5 —0.0525 —0.0463 0.0263 0.0255

Table 5. Shown is the comparison of the wavelength of snaking
As from the bifurcation diagram and wavelength of the un-
dulations of the foot Ay from the foot-like profile with the
wavelength A calculated from the eigenvalues Af; at Us for
a = 0.5. Note the locking between A ~ A; ~ Ay. See fig. 3 and
fig. 6.

a | A=27/Im[A 1]
0.5 181.6987

Ay (long)
202.6920

Ay (short) A
198.8801 | 184.7657

a > o there is a negative real eigenvalue, Af 3, and a pair
of complex conjugate eigenvalues with positive real parts,
A1 and Afo. Table 2 shows the values of eigenvalues Ay ;,
i=1,2,3, for a =0.1 and 0.5.

In tables 3 and 4, we compare Re[Af 3] with the expo-
nential rate vg characterising the connection between the
foot and the precursor film, and Re[Af 1] with the expo-
nential rate vg, characterising the connection between the
foot and the bath. Table 3 corresponds to a short foot,
while table 4 corresponds to a long foot. For a = 0.5 the
plate velocity is equal to U, while for o = 0.1 we choose
a foot of approximately the same lengths as for a = 0.5
and we note that for o = 0.1 the bifurcation curves do not
reach U, but for the chosen foot the velocities coincide
with Uy, up to at least seven significant digits. The results
show that there is good agreement between Re[Ay 3] and
v, and between Re[Af 1] and vy, for both values of @ and
for both foot lengths, with a maximal error below 12%.
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Table 6. Shown is the comparison of the exponential decay
constant 1/vg from the bifurcation diagrams with the eigenval-
ues Ar; calculated from the linear stability analysis for « = 0.1
and a = 0.5. See fig. 3.

a | Re[Ap1] | 1/vs
0.1 | 0.0173 | 0.0151
0.5 | 0.0263 | 0.0284

In table 5 we compare A = 27 /Im[A; 1] with the wave-
length of the oscillations on the foot, Ay, for a long and
a short foot, and with the wavelength of oscillations in
snaking bifurcation diagrams, As, when « = 0.5. The re-
sults show that there is good agreement between A and
As —the error is below 2%, and between A and Ay for
both foot lengths —the error is below 12%?2.

In table 6, we compare Re[Ay1] with the exponential
rate 1/vg, where v is characterises the rate at which the
bifurcation diagrams approach the vertical asymptotes.
We again observe good agreement for both values of «,
with an error below 13%.

The close agreement between the eigenvalues corre-
sponding to the foot and the quantities obtained from the
bifurcation diagrams and the foot profiles is explained in
the next section.

5 Collapsed heteroclinic snaking

In what follows, our aim is to explain the snaking be-
haviour observed in our numerical results, see the left pan-
els of fig. 3 and fig. 5. We perform our analysis in the way
similar to the Shilnikov-type method for studying sub-
sidiary homoclinic orbits near the primary one explained

2 The wavelength A; is measured using the |h(z) — hy| data
that are presented in fig. 6. The distances between divergencies
at x;, i.e., at the positions where |h(z;) — hf| — 0 correspond
to a semi-period of the foot wavelength Ay. The value of Ay
is determined as the average of all available (z;4+1 — x;). Note
that we can observe only up to five semi-periods due to the
exponentially decreasing amplitude of the modulation and the
restricted number of digits of the profile data obtained from
AUTO-07p. As a result, the undulations are not detectable
when their amplitude decreases below ~ 1077. The effect is
clearly seen in the lower left panel of fig. 6, where for a = 0.5
we observe a plateau between the visible undulations and the
exponential decay with rate vy, towards the precursor film.
Further, there is a limited accuracy due to the number of dis-
cretisation points in space. The measurement of As is more
exact as it makes use of the data employed in the |U — U]
graph (figs. 3 and 6). In contrast to the thickness profile data,
these bifurcation curve data are of a high precision allowing
us to see about 10 semi-periods. A, is measured only taking
values of the semi-periods that have already converged to 3
significant digits, i.e., at |U —Us| — 0 (cf. fig. 3). Several such
lr(i 4+ 1) —ls(i) values corresponding to the length of a semi-
period of the snaking wavelength are then averaged to obtain
As. This ensures that nonlinear effects do not enter the picture
(that are likely to be present in the A; measurement).
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in, e.g., ref. [22]. For simplicity, we consider the case of
zero temperature gradient, i.e., we set 2 = 0. First, let
us consider fixed points of system (9)-(11) with y; # 0.
For such fixed points, yo = y3 = 0 and y; satisfies the

equation
U Ga
— .3 2
=y, — — — =0. 50
fy) =w-Gn+ o (50)
It can be easily checked that this cubic polynomial has
a local maximum at y§ = 0 and a local minimum at

a positive point 3. Moreover, f(y§) > 0 implying that
there is always a fixed point with a negative value of the
y1-coordinate. We disregard this point, since physically
it would correspond to negative film thickness. Also, as-
suming that Ga < (4/27)(U3/C2), we obtain f(y%) < 0,
which implies that there are two positive roots a; and as
of the cubic polynomial satisfying a; < as. This implies
that there are two more fixed points, y; = (a1, 0, 0) and
yp = (a2, 0, 0). The point y; corresponds to the foot and
the point y, corresponds to the precursor film.

To analyse stability of these fixed points, we compute
the Jacobian at these points,

0 —ai, 0
0 0 1

Jy
2Uay, —3Coa}, 6a],—3aj,+G 0

(51)

o

A simple calculation shows that for both, y; and v, all
the eigenvalues have non-zero real parts implying that
these points are hyperbolic. Moreover, both points have
two-dimensional unstable manifolds and one-dimensional
stable manifolds. Our numerical simulations presented in
the previous section show that for the values of the in-
clination angle o that we have considered, there exists a
value of the plate speed, Us, such that in the vicinity
of this value there exist steady solutions for which the
foot length can be arbitrarily long, see fig. 3. (In fact,
we found that this is true if a is smaller than a certain
transition value ap &~ 2.42. For larger values of «, the so-
lution branches originating from U = 0 are not anymore
characterised by such limiting velocities. In the present
manuscript, we do not consider such solutions and assume
therefore that o« < ap. Other types of solutions will be
analysed elsewhere.) We conclude that at U = U, there
exists a heteroclinic chain connecting the fixed points y,,
yr and ;. As was discussed in the previous section, in
the top panel of fig. 8, we can observe that for point y,
all the eigenvalues are real at U = U, implying that this
point is a saddle. The two bottom panels of fig. 8 demon-
strate that there is a critical inclination angle a. ~ 0.1025
such that for a@ < a, all the eigenvalues for y; are real,
whereas for a > a., one eigenvalue is real and negative
and there is a pair of complex conjugate eigenvalues with
positive real parts. Therefore, for o < a, point y; is a
saddle, but for a > «., it is a saddle-focus. In the follow-
ing Theorem, we analytically prove that if y; is a saddle-
focus, there exists an infinite but countable number of
subsidiary heteroclinic orbits connecting y, and y, that
lie in a sufficiently small neighbourhood of the heteroclinic
chain connecting vy,, y; and y,. This explains the exis-
tence of an infinite but countable number of steady-state
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solutions having different foot lengths observed in the pre-
vious section, see the left panels of fig. 3 and fig. 5. Note
that an infinite but countable number of solutions has also
been observed in, e.g., ref. [16] for the case of a liquid film
rising onto a resting inclined plate driven by Marangoni
forces due to a temperature gradient. There, the authors
identify type 1 and type 2 solutions with small and large
far-field thicknesses, respectively. These correspond to our
precursor and foot height, respectively. It is observed that
for certain parameter values there exists an infinite but
countable number of type 2 solutions. Similar to our case,
this can be explained by the existence of a heteroclinic
chain connecting the three fixed points. However, unlike
here, in ref. [16] the chain connects the fixed point for the
thick film along its unstable manifold with the fixed point
for the thin film thickness that is then connected with the
fixed point for the bath.
Theorem. Consider a three-dimensional system

y' = f(y, B),

where 3 denotes a parameter (that takes the role of the
plate velocity U above). We assume that there exist three
fixed points, which we denote by vy,, y; and y,, when 3
is sufficiently close to a number 3y (i.e., a number like
the plate velocity Us). We additionally assume that y,
and y;, have a two-dimensional unstable manifold W, (yp)
and a two-dimensional stable manifold Ws(ys), respec-
tively, and that y; is a saddle-focus fixed point with
a one-dimensional stable manifold Wy(ys) and a two-
dimensional unstable manifold W, (ys) (i.e., the eigen-
values of the Jacobian at yy are —A;, A2 i w, where
A1 = M(B), A2 = Xa(f) and w = w(B) are positive
real numbers when 3 is sufficiently close to (3)3. Let us
also assume that for 8 = fy, there is a heteroclinic orbit
In € Wyu(yp) N Ws(yy) connecting y, and y; and that
the manifolds W,,(ys) and W(y,) intersect transversely
so that there is a heteroclinic orbit I € Wy, (yr) N W(yp)
connecting y; and y,. Then for 3 = 3y there is an infinite
but countable number of heteroclinic orbits connecting vy,
and y;, and passing near y;. Moreover, the difference in
“transition times” from y, to y, tends asymptotically to
m/w (the meaning of a “transition time” from y, to yy
will be explained below).

Proof: After a suitable change of variables, the dy-
namical system y’' = f(y, ) can be written in the form

y e R3, (52)

YL = doy1 — wys + fl(% B), (53)
Yy = wyi + Aaye + fa(y, B), (54)
vy = —Mys + f3(y, B), (55)

where f;, i = 1, 2, 3, are such that 8ﬂ/8yj =0,4,j =
1,2, 3, at y = yy. After such a change of variables, the

3 Here, the unstable manifold of ¥, refers to the set of points
yo such that ¢¢(yo) — yp as t — —oo, where ¢, is the solution
(or evolution) operator for the given dynamical system, and
the stable manifold of y; refers to the set of points yo such
that ¢¢(yo) — y» as t — oo. These definitions are consistent
with those given, e.g., in ref. [49].
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origin is a stationary point corresponding to y; and suffi-
ciently close to the origin, the terms f1(y, 3), f2(y, §) and
f3(y, B) are negligibly small, so that near the origin the
dynamical system can be approximated by the linearised
system

Yy = At — wyz, (56)
yh = wyi + Aaya, (57)
Yy = —A\1Y3. (58)

Let Xy be a plane normal to the stable manifold of yy,
I, and located at a small distance €1 from yy, i.e., locally
2y is given by

1 ={(y1, 2. €1) : Y1, y2 € R} (59)

Let X5 be part of a plane transversal to the unstable
manifold of yy, I, at some point near y; and passing
through gy that is locally given by

Yy ={(1,0,93) : lyr —r*| <e2, Jys| <es}h.  (60)
Here (r*, 0, 0) € I is sufficiently close to the origin and
€3 < e1. We denote the upper half-plane of X5, when
ys > 0, by X, de, ¥ = {y € Xy : y3 > 0} and
let X = 55\ X5 . We choose ¢5 to be sufficiently small so
that each trajectory crosses X5 only once. It can be shown
that this condition is satisfied when 9 < tanh(Aom/w) r*.

Using cylindrical polar coordinates (r, 8, z), such that
y1 = rcosf, yo» = rsinf and y3 = z, the linearised dy-
namical system near the origin is given by

r’ = Aar, (61)
0 =w, (62)
2= —-\z. (63)

The solution is given by

r=ree’2®, (64)
0= 90 + wx, (65)
2 = zge M7, (66)

In the cylindrical polar coordinates, X is given by
z =¢1 and Yy is given by
Yo ={(r, 0, 2): |r—r"| <eq, |2| <e3}. (67)

Let ¢, be the flow map for the linearised dynamical
system. Also, let S be the set in X given by

S ={y € Xy : Jx such that p,(y) € Xs}. (68)
Then we can define the map
©: S — Yy y— p.(y) for some z > 0. (69)

It can easily be checked that the image of ¢ is in fact X5 .
Also, it can be easily seen that the set S is the so-called
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Shilnikov snake, a set bounded by two spirals, s; and ss,
given by

r=(r"+e)e 2 O=-wr, z=¢c;, (70)
respectively, where z € [(1/A1)log(e1/e3), 00), and the
following segment of a straight line:

i () o ()

0= wlog(eg>, z=€].
)\1 €1

Let [, = X1 N W,(y,) be the intersection of the two-
dimensional unstable manifold of ¥, and the plane X,
which is locally a straight line given for § = [y by the
equations 6 = 6, and z = €1, where 6, is some constant.
As 0, mod 7w determines the direction of the line, we can
choose without out loss of generality,

(72)

Op € (=7 + (w/A1)log(es/e1), (w/A1)log(es/e1)].  (73)
Next, let [,,, n =1, 2, ..., be the intersections of the line
I, with set S such that |l1]| > |lo| > --- , where |I,,| denotes
the length of the segment [,,, n =1, 2, ..., see fig. 9. We
can see that [, is given by

r € [(r" —ez) exp(=Az(m(n — 1) — bp)/w),
(r* + e2) exp(=Aa(m(n — 1) — 6,) /w)], (74)
0=0,—n(n—1)=0,modmw, z=¢;. (75)

Then, we find that (1)) is a segment of a line in Xy given
by

re[(r* —eq), (r* +2)], (76)
0=0, (77)
z=erexp(—Ai(m(n —1) = 0p)/w). (78)

Let I, = X5 N Wi(yp) be the intersection of the two-
dimensional stable manifold of y;, and the plane Y. Lo-
cally it is a segment of a straight line, and since manifolds
Wy (ys) and W, (yp) intersect transversely, this segment
of the line is given for § = 3y by parametric equations
r=r"4as, =0, z=s, (79)
where a is some constant and s is a parameter changing
from —e3 to 3. Note that we can choose €3 to be smaller
than e5/|a| so that the line [, intersects all the lines ¢(1,,),
n = 1,2, ..., and we denote such intersections points
by ypn, n = 1,2, .... Let us denote the preimages of
these points with respect to map ¢ by ypn, n =1, 2, ....
Note that y,, € l,, n = 1,2, .... Next, since for each
n=1,2,..., point y,, belongs to the unstable manifold
of yp, there is an orbit I}, ,, connecting vy, and y, . Also,
by definition of point y, », it is mapped by the flow map
@z to point yp, and the “transition time” from y, , to
Yp,n 1s approximately equal to z = ti, = (m1(n—1)—6,)/w.
Note that the difference in “transition times” from wy,
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Y,

Fig. 9. Schematic representation in the three-dimensional
phase-space of the fixed points y,, ys and y, of system (52)
when 8 = fy. The fixed point y, is a saddle point with two-
dimensional unstable manifold, W, (y,), and a one-dimensional
stable manifold. The fixed point is y; is a saddle-focus with
two-dimensional unstable manifold and a one-dimensional sta-
ble manifold. The fixed point vy is a non-hyperbolic point hav-
ing two-dimensional stable manifold, W (ys). The fixed points
yp and ys are connected by the heteroclinic orbit /7 and the
fixed points y; and y, are connected by the heteroclinic or-
bit Is.

to Ypn and from y, 41y to Yy (ny1) tends to T/w as n
increases. We denote the orbit connecting ¥y, , with ys ,
by I't,. Finally, since vy, for each n = 1,2, ..., point
Yp,n belongs to the stable manifold of 1y, there is an orbit
I, connecting yp , and yp,. We conclude that there is an
infinite but countable number of subsidiary heteroclinic
orbits connecting points y, and y, that are given by
s = IpnUlfnUlyy, n=1,2, .... Moreover, the
difference in “transition times” for two successive orbits
I and Iy (,41) taken to get from plane X to plane Y
tends to m/w as n — oo. Q.E.D.

Remark. Snaking diagrams as those computed in the
previous section are obtained by an unfolding of the struc-
turally unstable heteroclinic chain connecting y,, y; and
yp. For [ close to By but not necessarily equal to (g, line
l, = 21 N Wy(yp) is locally given by

Y2 = b(B)y1 + c(B),

where ¢(8y) = 0 and b(Gy) = tan(f,) (without loss of
generality, we can assume that 6, # 7/2 4+ 7n for any
n € Z). This implies that in a small neighbourhood of
point (0, 0, €1), this line can be approximated by

y2 = (b(Bo) + ABV (Bo))yr + ABC (Bo), ys =e1, (81)

where A3 = 8 — By. Assuming that ¢/(3g) # 0, we obtain
that for 8 # By line [, is shifted in plane Y3 and does

Y3z = ¢, (80)
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74 BZB_<BO
L, B=B,
L, B=B,>B,

Fig. 10. Schematic representation of the Shilnikov snake, .S,
in plane X5. The solid line shows line I, for 5 = [y, the dashed
lines show lines [, for 8 = B+ > fo and for 8 = [f_ < [o.
The dotted line shows the locus of the points through which
heteroclinic orbits connecting y, and y; pass for certain values
of B near fy. The black square corresponds to the value of 5 at
which line [, is tangent to S and at which points y, (»—1) and
Yp,n vanish in a saddle-node bifurcation. The star corresponds
to the value of S_ at which line I, is tangent to S and at which
points Yy, » and Y, (n4+1) vanish in a saddle-node bifurcation.

not pass through point (0, 0, £1), see fig. 10. This implies
that for 8 # By line [, intersects the Shilnikov snake, S,
finitely many times. For sufficiently small A3, we denote
by 1,,(8) the intersection of I, with S that is obtained by
a small shift of [,, for B = [3y. By considerations similar to
those in the proof of the previous theorem, it can be shown
that in each of the line segments there is a point y, ,(5)
such that there is a heteroclinic orbit passing through
this point and connecting v, and y,. For 3 # By there
is only a finite number of such orbits. Figure 10 schemat-
ically shows [, by a solid line for 3 = By and by dashed
lines for § = (B4 > [y and § = - < fy. In addition,
points yp,(nfl)(ﬁ+)a yp,n(ﬁJr)a yp,n(ﬁf) and yp,(n+1)(ﬁf)
are shown. For certain value of 3, points y, (,—1)(8+),
Yp.n(B+) vanish in a saddle-node bifurcation. This point is
indicated by a black square in the figure. At this point, line
[, is tangent to the boundary of S. Also, for certain value
of B_, points Yy n(B-), Yp,(nt)(B-) vanish in a saddle-
node bifurcation. This point is indicated by a star in the
figure. At this point, line [, is tangent to the boundary of
S. The locus of the points through which heteroclinic or-
bits connecting vy, and y; pass for certain values of 3 near
o is shown by a dotted line. It can be seen that this line
is a spiral, s, that belongs to S, passes through points y,, »,
and is tangent between transitions from y, » t0 Yy (n41)s
n =1, 2,..., to the boundary of S given by spiral s1. It
can therefore be concluded that the bifurcation diagram
showing the “transition time” for heteroclinic orbits con-
necting y, and y, versus parameter [ is a snaking curve,
shown schematically in fig. 11, similar to the numerically
obtained cases in figs. 3, 2 and 5 for a = 0.5. There is an
infinite number of such orbits in a neighbourhood of Gy
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t. A

Fig. 11. Bifurcation diagram for heteroclinic orbits connecting
yp and yy.

and there is an infinite but countable number of saddle-
node bifurcations that correspond to the points at which
spiral s touches the boundary of the Shilnikov spiral, S.
We can find that the slope of the line tangent to spiral

s1 18

dys

—= = Rtan(6 + 6

dyl an( + 0)?
where R = /A2 +w? and 6y = tan™!(w/\2). Therefore,

at the points where line [, touches spiral s1, we must have

Rtan(0,, + 6o) = b(Bo) + ABY (Bo),

(82)

(83)

where 6,, and AfS,, are the values of 8 and AS correspond-
ing to the n*® saddle-node bifurcation. Thus, at these
points

6, = tan~! <b(£0)

for sufficiently large integer n. Equivalently,

= — Lo < (50)+Aﬂnb/(ﬂo)>+ 4T
w w

v (Bo)

+ AB, 7 > —0p—mn,  (84)

n. (85)

w

From this formula, we clearly see that the difference
in transition times between two saddle-node bifurcations
tends to m/w. Also, at the saddle-node bifurcations we
must have

Ty Sin 0, = (b(ﬁo) + Aﬁnbl(ﬂo))rn cos O, + Aﬁnc/(ﬁo)a (86)
where 7, = (r* + 52)6_’\2“, which implies
sin6,, — b(By) cos B,
ABp =10 87
p ' (Bo) +b'(Bo)rn (87)
From the latter expression, we can conclude that
|AB| = O(ry) = O(e™ ™), (88)

which shows that the snaking bifurcation diagram ap-
proaches the vertical asymptote at an exponential rate,
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and explains the results presented in the bottom right
panel of fig. 3 and in table 6.

Also, note that if y¢ is a saddle, then the set S is not
a spiral but is a wedge-shaped domain. The line [, then
passes through the vertex of this domain for g = 3y and,
generically, intersects it in the neighbourhood of the vertex
only for 8 < By but not for § > By or vice versa. Then,
the bifurcation diagram showing the “transition time” for
heteroclinic orbits connecting y,, and y;, versus parameter
[ is a monotonic curve instead of a snaking curve shown
in fig. 11, similarly to the case in fig. 3 for o = 0.1.

In the drawn meniscus problem the difference in tran-
sition times between two saddle-node bifurcations (that
tends to m/w) is a measure of the wavelength of the un-
dulations on the foot and is therefore equivalent to the
measures Ay (as extracted from the steady thickness pro-
files) and A (as extracted from the bifurcation curve)
discussed in sect. 4 (see, in particular, table 5 where A
represents 7/w). The overall transition time corresponds
to the foot length [;. Thus one can conclude that the bi-
furcation diagrams presented in figs. 3 and 5 are explained
by the results that have been presented in this section.

6 Conclusions

We have analysed a liquid film that is deposited from a
liquid bath onto a flat moving plate that is inclined at a
fixed angle to the horizontal and is removed from the bath
at a constant speed. We have analysed a two-dimensional
situation with a long-wave equation that is valid for small
inclination angles of the plate and under the assumption
that the longitudinal length scale of variations in the film
thickness is much larger than the typical film thickness.
The model equation used in most parts of our work in-
cludes the terms due to surface tension, the disjoining (or
Derjaguin) pressure modelling wettability, the hydrostatic
pressure and the lateral driving force due to gravity, and
the dragging by the moving plate. To further illustrate
a particular finding, we have also considered the situa-
tion where an additional lateral Marangoni shear stress
results from a linear temperature gradient along the sub-
strate direction. Our main goal has been to analyse se-
lected steady-state film thickness profiles that are related
to collapsed heteroclinic snaking.

First, we have used centre manifold theory to properly
derive the asymptotic boundary conditions on the side of
the bath. In particular, we have obtained asymptotic ex-
pansions of solutions in the bath region, when x — oco.
We found that in the absence of the temperature gradi-
ent, the asymptotic expansion for the film thickness, h,
has the form h ~ ZZO=_1 Dy,x~"™, where without loss of
generality Do can be chosen to be zero (fixing the value of
Dy corresponds to breaking the translational invariance
of solutions and allows selecting a unique solution from
the infinite family of solutions that are obtained from
each other by a shift along the z-axis). In the presence
of the temperature gradient, this asymptotic expansion is
not valid, but instead consists of terms proportional to x,
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logz and x~™log" x, where m and n is a positive and a
non-negative integer, respectively. Note that our system-
atically obtained sequence differs from the one employed
in ref. [16].

Next, we have obtained numerical solutions of the
steady-state equation and have analysed the behaviour
of selected solutions as the plate velocity and the tem-
perature gradient are changed. When changing the plate
velocity, we observe that the bifurcation curves exhibit
collapsed heteroclinic snaking when the plate inclination
angle is larger than a certain critical value, namely, they
oscillate around a certain limiting velocity value, Uy, with
an exponentially decreasing oscillation amplitude and a
period that tends to some constant value. In contrast,
when the plate inclination angle is smaller than the critical
value, the bifurcation curve is monotonic and the veloc-
ity tends monotonically to Us,. The solutions along these
bifurcation curves are characterised by a foot-like struc-
ture that emerges from the meniscus and is preceded by a
very thin precursor film further up the plate. The length
of the foot increases continuously as one follows the bi-
furcation curve as it approaches U,,. It is important to
note that these solutions of diverging foot length do not
converge to the Landau-Levich film solution at the same
U = U Indeed, the foot height at U, () scales as U'/2
while the Landau-Levich films scale as U2/3. As expected,
the results for the bifurcation curves that we here obtained
with a precursor film model are similar to results obtained
for such situations employing a slip model [5,12]. The pro-
truding foot structure has been observed in experiments,
e.g., in refs. [5,6,15] where even an unstable part of the
snaking curve was tracked. However, the particular transi-
tion described here has not yet been experimentally stud-
ied. This is in part due to the fact that in an experiment
with a transversal extension (fully three-dimensional sys-
tem) transversal meniscus and contact line instabilities set
in before the foot length can diverge. We believe that ex-
periments in transversally confined geometries may allow
one to approach the transition more closely. Experiments
with driving temperature gradients exist as well but focus
on other aspects of the solution structure like, for instance,
various types of advancing shocks (travelling fronts) and
transversal instabilities [45]. We are not aware of studies
of static foot-like structures in systems with temperature
gradients.

We further note that the described monotonic and non-
monotonic divergence of foot length with increasing plate
velocity may be seen as a dynamic equivalent of the equi-
librium emptying transition described in ref. [46]. There,
a meniscus in a tilted slit capillary develops a tongue (or
foot) along the lower wall. Its length diverges at a criti-
cal slit width. In our case, the length of the foot diverges
at a critical plate speed —monotonically below and oscil-
latory above a critical inclination angle. The former case
may be seen as a continuous dynamic emptying transition
with a close equilibrium equivalent. The latter may be
seen as a discontinuous dynamic emptying transition that
has no analogue at equilibrium. This is further analysed
in ref. [47].
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Finally, we have shown that in an appropriate three-
dimensional phase space, the three regions of the film pro-
file, i.e., the precursor film, the foot and the bath, corre-
spond to three fixed points, y,, yy and 1y, respectively,
of a suitable dynamical system. We have explained that
the snaking behaviour of the bifurcation curves is caused
by the existence of a heteroclinic chain that connects vy,
with y; and y; with y, at certain parameter values. We
have proved a general result that implies that if the fixed
points corresponding to the foot and to the bath have two-
dimensional unstable and two-dimensional stable mani-
folds, respectively, and the fixed point corresponding to
the foot is a saddle-focus so that the Jacobian at this
point has the eigenvalues —Aq, A2 & 1w, where \; > and
w are positive real numbers, then in the neighbourhood
of the heteroclinic chain there is an infinite but countable
number of heteroclinic orbits connecting the fixed point
for the precursor film with the fixed point for the bath.
These heteroclinic orbits correspond to solutions with feet
of different lengths. Moreover, these solutions can be or-
dered so that the difference in the foot lengths tends to
m/w. We have also explained that in this case the bifur-
cation curve shows a snaking behaviour. Otherwise, if the
fixed point corresponding to the foot is a saddle, the Ja-
cobian at this point has three real non-zero eigenvalues,
and the bifurcation curve is monotonic.

The presented study is by no means exhaustive. It
has focused on obtaining asymptotic expansions of the
solutions in the bath region using rigorous centre man-
ifold theory and on analysing the collapsed heteroclinic
snaking behaviour associated with the dragged meniscus
problems. However, the system has a much richer solution
structure. Beside the studied solutions one may obtain
Landau-Levich films and investigate their coexistence with
the discussed foot and mensicus solutions. For other solu-
tions the bath connects directly to a precursor-type film
which then connects to a thicker “foot-like” film which
then goes back to the precursor-type film that continues
along the drawn plate. These solutions and their relation
to the ones studied here will be presented elsewhere.
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