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Abstract
We discuss an active phase field crystal (PFC) model that describes a mixture
of active and passive particles. First, a microscopic derivation from dynamical
density functional theory is presented that includes a systematic treatment of the
relevant orientational degrees of freedom. Of particular interest is the construc-
tion of the nonlinear and coupling terms. This allows for interesting insights
into the microscopic justification of phenomenological constructions used in
PFC models for active particles and mixtures, the approximations required for
obtaining them, and possible generalizations. Second, the derived model is
investigated using linear stability analysis and nonlinear methods. It is found
that the model allows for a rich nonlinear behavior with states ranging from
steady periodic and localized states to various time-periodic states. The latter
include standing, traveling, and modulated waves corresponding to spatially
periodic and localized traveling, wiggling, and alternating peak patterns and
their combinations.
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1. Introduction

Active particles such as animals, bacteria, and artificial microswimmers, which transform
energy into directed motion, are of significant importance to modern physics both due to their
remarkable collective nonequilibrium behavior and their significant technological and biologi-
cal relevance [1–4]. Of particular interest in current research are mixtures of active and passive
particles, which can exhibit remarkable dynamics. An example is motility-induced phase sepa-
ration (MIPS) [5], i.e., liquid–gas phase separation in a system of active particles that can occur
even for purely repulsive interactions. The state diagram for MIPS has been found to be affected
by the presence of passive particles [6]. Further phenomena exhibited by active–passive mix-
tures include separation of active and passive particles [7], Hopf bifurcations leading to moving
clusters [8], collapses in a circular shear cell [9], transitions from gas-like behavior to oscilla-
tions and collapses [10], and the existence of different demixing types [11]. This has also led
to an increased interest in theoretical models describing such mixtures [8, 9, 12–14]. More-
over, topological defects in active nematics can be modeled as mixtures of active and passive
particles [15, 16]. The study of active–passive mixtures in polymer systems is of biological
relevance as it allows one to describe phase separation in DNA strands [17, 18]. Research on
such mixtures also has a variety of possible applications, such as controlling the properties of
passive materials using active dopants [19–22] and effects of swimming microorganisms such
as algae on their environment [23–25]. Finally, whenever the active particles are immersed
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in a passive solvent—as is the case in almost all experimental or theoretical scenarios where
active matter is considered—we are, strictly speaking, already dealing with a mixture of active
and passive particles. Note that some of the mentioned properties of active–passive mixtures
do also occur in ‘standard’ active matter models without the passive component. For instance,
although in active phase field crystal (PFC) models [26] (see below) the onset of motion of
clusters normally occurs via drift pitchfork bifurcations [27, 28], Hopf bifurcations can also
be responsible [29].

A useful tool for the description of active matter is provided by field theories. These exist in a
large variety of forms, ranging from simple Cahn–Hilliard-type models [30, 31], such as active
model B1 [32] and its extensions active model B+ [35], active model H [36, 37], and active
model I+ [34], to complex predictive models [33, 38–40] and active thin-film models [41, 42].
Here, ‘model B’ and ‘model H’ refer to Cahn–Hilliard and Navier–Stokes–Korteweg models,
respectively, in the classification by Hohenberg and Halperin [43], while ‘model I’ refers to a
model for inertial Brownian particles [34]. Of particular importance is dynamical density func-
tional theory (DDFT), developed in references [44–50] and reviewed in references [51, 52],
which can be derived systematically from the equations of motion of the individual particles
and thus constitutes a microscopic description of a system. DDFTs for active systems have
been developed in a large variety of forms [9, 53–66]. Moreover, DDFT has been successfully
applied in related fields such as cancer growth [67, 68] and disease spreading [69, 70].

Due to the complexity of DDFT, that normally represents integro-differential, i.e., nonlocal
equations, PFC models are a popular alternative. Originally proposed on a phenomenological
basis [71–73], they were found to be a local approximation to DDFT [74, 75]. PFC models
have been extended into a variety of directions, allowing one to describe, e.g., binary mixtures
[71, 76–80] and particles with orientational degrees of freedom [81–84]. The active PFC
model, an extension of the PFC model to active matter which was proposed and derived
from DDFT in references [26, 85], has also been extended, allowing one to describe systems
on curved surfaces [86], self-spinning particles [87], particles with inertia [88, 89], particles
with nonreciprocal interactions [90], and mixtures of active and passive particles [12, 90]—an
extension suggested already in the first article on active PFC models [26]. Further investi-
gations of active PFC models can be found in references [27–29, 91–94]. A review of PFC
models is given by references [95, 96], the derivation of PFC models from DDFT is discussed
in references [51, 97]. Reference [90] discusses the occurrence of localized states (LSs) in a
number of passive and active PFC models.

When considering PFC models for mixtures, it is interesting that microscopic derivations
[76, 77] give relatively complicated coupling terms, whereas models proposed on a phe-
nomenological basis typically employ a very simple coupling [71, 78, 79, 90]. A similar obser-
vation can be made for active PFC models: the derivation of the active PFC model from DDFT
in reference [85] is focused on the dynamical part, whereas the free energy was simply imported
from phenomenological models [26]. Microscopic treatments, on the other hand, show that the
free energy in a PFC model with orientational dynamics can be very complex [81–84]. Con-
sequently, a systematic microscopic derivation of an active PFC model for a binary mixture
is required to investigate both what the general form looks like and which assumptions are
required to recover simple phenomenological models, thereby providing insights into their
range of applicability and into ways to improve them.

1 The dynamical variable of the Cahn–Hilliard-type active model B (AMB) developed in reference [32] is a scalar order
parameter adapted to the problem of phase separation that is related to the actual density via a linear transformation.
AMB can be derived as a limiting case of more general microscopic density-based models, as shown, e.g., in references
[33, 34].
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The aim of the present work is twofold: first, we derive a general PFC model for a binary
mixture of active and passive particles from a microscopic DDFT and obtain from it a simpler
minimal model (which we refer to as model 1), thereby revealing both, the necessary approx-
imations and possible generalizations. Second, we investigate this active binary PFC model
using linear and nonlinear methods. It is found to have interesting properties that differ from
those of simple active PFC models and models for passive binary mixtures.

This article is structured as follows: the minimal binary active PFC model is introduced in
section 2. A general PFC model is derived from DDFT in section 3. Approximations leading
to the minimal model are discussed in section 4. In section 5, we perform a linear stability
analysis of the PFC model. Nonlinear results are shown in section 6. We conclude in section 7.

2. Governing equations

We start by introducing the central model of this work based on phenomenological arguments.
In the active PFC model [26, 27, 29, 85], a system is described using a conserved scalar field
ψ(�r , t) (depending on position�r and time t), which describes the dimensionless deviation from
a mean particle number density, and a nonconserved vector field �P(�r , t), which measures the
polarization. They follow the dynamic equations

∂tψ = �∇2 δF
δψ

− v0
�∇ · �P, (1)

∂t�P = �∇2 δF

δ�P
− Dr

δF

δ�P
− v0

�∇ψ. (2)

Here, v0 is the activity of the particles and F is a free energy functional. This functional can be
written as

F = Fpfc + FP, (3)

where

Fpfc =

∫
ddr

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4

(ψ + ψ̄)4

)
(4)

is a Swift–Hohenberg-type free energy [95, 98] in d spatial dimensions and

FP =

∫
ddr

(
C1

2
�P2 +

C2

4
�P4

)
(5)

is the orientational contribution to F. For C1 < 0 and C2 > 0, the system exhibits spontaneous
polarization. Most treatments only consider the case C1 > 0 and C2 = 0 where no sponta-
neous polarization occurs [27, 85]. In addition to the parameters C1 and C2, the free energy
depends on the parameters εψ (scaled shifted temperature), qψ (critical wavenumber), and ψ̄
(dimensionless mean density). We mark these parameters with a subscript ψ since they can
differ for the components of a mixture, for example if its components have different freezing
temperatures [78].

For the case v0 = 0, equation (1) reduces to the standard PFC model for passive systems
[95, 99]. It has the form of a gradient dynamics, where the system evolves toward the minimum
of a free energy. The passive PFC model shares this property with DDFT [51] and many other
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soft matter models [100–104]. In the active case, however, the coupling terms −v0
�∇ · �P and

−v0
�∇ψ in equations (1) and (2), respectively, break this structure since they are nonvariational,

i.e., they cannot be obtained from a free energy. This is a typical feature of active matter models
[32].

The active PFC model given by equations (1) and (2) is a two-field model for a single species
of active particles. The scalar field ψ and vector field �P describe the density and orientational
order (polarization) of the single particle species of a one-component system. A PFC model
can, however, also describe mixtures of different particle species employing a larger number
of fields. For a simple case of a binary mixture of passive particles, see references [77, 78].
In contrast, here, we consider a binary mixture of passive particles with density φ and active
particles with density ψ and polarization �P. In this case, we have to add to equations (1) and
(2) the equation

∂tφ = �∇2 δF
δφ

. (6)

Note that no modification of equation (1) is required, since the coupling between the different
particle species is purely variational (for a case of nonvariational coupling, see section 4.2 of
reference [90]). The variational coupling is introduced by adding a mixed term Fcoup[ψ,φ] to
the free energy (3), which now takes the form

F = Fpfc[ψ] + Fpfc[φ] + FP[�P] + Fcoup[ψ,φ]. (7)

It is common [71, 78, 79] to use the simplest nontrivial form

Fcoup =

∫
ddr aψφ, (8)

where a is a coupling constant.
It is interesting to note that equations (1), (2) and (6) do not contain dissipative cross-

coupling terms in the sense that, when setting v0 = 0 and writing equations (1), (2) and (6)
as a vector-matrix equation, the mobility matrix is diagonal. For example, ∂tψ contains a term
proportional to �∇2δF/δψ, but no similar terms with δF/δ�P or δF/δφ. We will refer to terms
containing δF/δξ j in an equation for ∂tξi with a field ξi and i �= j briefly as ‘off-diagonal terms’
from now on. The absence of off-diagonal terms is surprising given that they occur quite fre-
quently in soft matter physics and play important roles [105, 106]. The reason that there are no
off-diagonal terms coupling ψ and φ is that DDFT for mixtures, from which equations (1), (2)
and (6) are derived in this work, does not contain them (see reference [51] and section 3 for a
discussion of this point). Off-diagonal terms coupling ψ and �P are absent due to the constant
mobility approximation (CMA) made in the derivation of PFC models from DDFT, this issue
is addressed in section 4.

Inserting equations (4), (5), (7) and (8) into equations (1), (2) and (6), setting C2 = 0, and
carrying out the functional derivatives gives the equations of motion

∂tψ = �∇2((εψ + (q2
ψ + �∇2)2)ψ + (ψ̄ + ψ)3) − v0

�∇ · �P + a�∇2φ, (9)

∂t�P = (�∇2 − Dr)C1�P − v0
�∇ψ, (10)

∂tφ = �∇2((εφ + (q2
φ + �∇2)2)φ+ (φ̄+ φ)3) + a�∇2ψ, (11)

5
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where by convention we have explicitly introduced the mean densities ψ̄ and φ̄ as param-
eters, i.e.,

∫
d drψ = 0 and

∫
d drφ = 0. From here on, we refer to the model given by

equations (9)–(11) as ‘model 1’. It is closely related to active binary PFC models used in
previous works [12, 90], although there are small differences (reference [90] uses εψ = εφ and
qψ = qφ = 1, reference [12] uses a nonlinear instead of a linear coupling term).

3. Derivation of general model

After having introduced model 1 on a phenomenological basis, we now aim for a systematic
derivation from the microscopic dynamics of the particles in two spatial dimensions. In doing
so, we will make use of a variety of previous results on the derivation of PFC models from
DDFT. The ‘standard’ case of a one-component system with no orientational degrees of free-
dom is discussed in references [75, 95, 97]. Binary systems were considered in references
[76, 77], orientational degrees of freedom in references [81–84, 107], and active particles in
references [26, 85].

The starting point is the DDFT

∂tρψ(�r ,�u, t) = �∇ · DT ·
(
βρψ(�r ,�u, t)�∇ δF

δρψ(�r ,�u, t)

)
+ DR∂ϕ

(
βρψ(�r ,�u, t)∂ϕ

δF
δρψ(�r ,�u, t)

)

− �∇ · DT ·
(
ρψ(�r ,�u, t)

v

D‖
�u

)
, (12)

∂tρφ(�r , t) = D�∇ ·
(
βρφ(�r , t)�∇ δF

δρφ(�r , t)

)
, (13)

where ρψ and ρφ are ensemble-averaged one-body densities (this is why no noise terms are
required [51, 108, 109]), β is the thermodynamic beta, DT = D‖�u ⊗ �u + D⊥(𝟙− �u ⊗ �u) with
constants D‖ and D⊥, dyadic product ⊗, and unit matrix 𝟙 is the translational diffusion tensor
of the (active) field ρψ, DR its rotational diffusion constant, D the translational diffusion con-
stant of the (passive) field ρφ,�u(ϕ) = (cos(ϕ), sin(ϕ))T with polar angle ϕ the orientation, F an
equilibrium free energy functional, and v the active propulsion speed. The density ρψ gives the
probability of finding a particle of species ψ with orientation �u at position�r at time t, whereas
ρφ gives the probability of finding a particle of species φ (assumed to have no orientational
degrees of freedom) at position �r at time t. Equation (12) is a standard active DDFT for uni-
axial particles [53] in two spatial dimensions and identical to the one employed in reference
[85]. The more general case of active particles with arbitrary shape in three spatial dimensions
was considered in reference [54]. Equation (13) is a standard DDFT for passive particles. As
discussed in references [47, 49, 54], DDFT can be derived systematically from the microscopic
Langevin equations for active and passive particles using the ‘adiabatic approximation’, where
it is assumed that the pair correlations in the nonequilibrium system are equal to those of an
equilibrium system with the same one-body density. This assumption, which is required to
close the equations of motion for the one-body density, is not exactly true, but it is a good
approximation for many systems of interest [51].

To obtain equations (12) and (13) from the corresponding single-species DDFT, we have
used the fact that the DDFT equation for mixtures has the well-known form [45, 51, 110]

6
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∂tρi = Γi
�∇ ·

(
ρi
�∇δF[{ρ j}]

δρi

)
, (14)

where Γi is the mobility and ρi the density of species i. A microscopic derivation of
equation (14) can be found in reference [110]. Notably, equation (14) does not contain off-
diagonal terms. As discussed in reference [51], this can change in the presence of hydrody-
namic interactions (incorporated into DDFT in reference [111] and into DDFT for mixtures in
reference [112]) or if incompressibility constraints are enforced [113, 114]. In equations (12)
and (13), hydrodynamic interactions are neglected. In reference [103], the absence of off-
diagonal terms in equation (14) was attributed to the fact that DDFT describes diffusion
relative to a resting substrate (in contrast to thin-film models describing diffusion relative to
the center-of-mass motion of a fluid, in which off-diagonal terms do appear).

To derive the corresponding PFC model, we need to approximate both the dynamical
equations and the free energy. Although these approximations are, as shown by Archer et al
[97], intimately connected, it is helpful to consider them separately. We start with the free
energy. In (D)DFT, it is (ignoring external potentials) given by

F = Fid + Fexc. (15)

Here, Fid is the ideal gas free energy. It is known exactly and given by2

Fid = β−1
∫

d2r
∫ 2π

0
dϕ ρψ(�r ,�u)(ln(Λ2

ψρψ(�r ,�u)) − 1)

+ β−1
∫

d2rρφ(�r)(ln(Λ2
φρφ(�r )) − 1),

(16)

where Λψ and Λφ are the (irrelevant) thermal de Broglie wavelengths, which may differ for the
two species.

The second term in equation (15) is the excess free energy Fexc. It is not known exactly
and has to be approximated. A systematic way of doing this is a functional Taylor expansion
[44, 51, 83, 95] around a homogeneous state up to fourth order, which gives

βFexc = − 1
2

∫
d2r

∫
d2r1

∫ 2π

0
dϕ

∫ 2π

0
dϕ1 cψψ(�r ,�r 1,�u,�u1)Δρψ (�r ,�u)Δρψ(�r 1,�u1)

−
∫

d2r
∫

d2r1

∫ 2π

0
dϕ cψφ(�r ,�r 1,�u)Δρψ(�r ,�u)Δρφ(�r 1) − 1

2

∫
d2r

∫
d2r1cφφ(�r ,�r 1)Δρφ(�r )Δρφ(�r 1)

− 1
6

∫
d2r

∫
d2r1

∫
d2r2

∫ 2π

0
dϕ

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2 cψψψ(�r ,�r 1,�r 2,�u,�u1,�u2)Δρψ(�r ,�u)Δρψ(�r 1,�u1)Δρψ(�r 2,�u2)

− 1
2

∫
d2r

∫
d2r1

∫
d2r2

∫ 2π

0
dϕ

∫ 2π

0
dϕ1 cψψφ(�r ,�r 1,�r 2,�u,�u1)Δρψ(�r ,�u)Δρψ(�r 1,�u1)Δρφ(�r 2)

− 1
2

∫
d2r

∫
d2r1

∫
d2r2

∫ 2π

0
dϕ cψφφ(�r ,�r 1,�r 2,�u)Δρψ(�r ,�u)Δρφ(�r 1)Δρφ(�r 2)

− 1
6

∫
d2r

∫
d2r1

∫
d2r2cφφφ(�r ,�r 1,�r 2)Δρφ(�r )Δρφ(�r 1)Δρφ(�r 2)

− 1
24

∫
d2r

∫
d2r1

∫
d2r2

∫
d2r3

∫ 2π

0
dϕ

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

∫ 2π

0
dϕ3 cψψψψ(�r ,�r 1,�r 2,�r 3,�u,�u1,�u2,�u3) (17)

Δρψ(�r ,�u)Δρψ (�r 1,�u1)Δρψ (�r 2,�u2)Δρψ(�r 3,�u3)

2 We do not write the dependence on time t in the equations for F to emphasize that we are dealing with equilibrium
functionals.
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− 1
6

∫
d2r

∫
d2r1

∫
d2r2

∫
d2r3

∫ 2π

0
dϕ

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2 cψψψφ(�r ,�r 1,�r 2,�r 3,�u,�u1,�u2)

Δρψ(�r ,�u)Δρψ (�r 1,�u1)Δρψ(�r 2,�u2)Δρφ(�r 3)

− 1
4

∫
d2r

∫
d2r1

∫
d2r2

∫
d2r3

∫ 2π

0
dϕ

∫ 2π

0
dϕ1 cψψφφ(�r ,�r 1,�r 2,�r 3,�u,�u1)

Δρψ(�r ,�u)Δρψ(�r 1,�u1)Δρφ(�r 2)Δρφ(�r 3)

− 1
6

∫
d2r

∫
d2r1

∫
d2r2

∫
d2r3

∫ 2π

0
dϕ cψφφφ(�r ,�r 1,�r 2,�r 3,�u)Δρψ(�r ,�u)Δρφ(�r 1)Δρφ(�r 2)Δρφ(�r 3)

− 1
24

∫
d2r

∫
d2r1

∫
d2r2

∫
d2r3cφφφφ(�r ,�r 1,�r 2,�r 3)Δρφ(�r )Δρφ(�r 1)Δρφ(�r 2)Δρφ(�r 3).

We have used the direct correlation functions [95]

c
1,...,
n = β
δnFexc

δρ
1 · · · δρ
n

∣∣∣∣∣
ρ
i=ρ̄
i

(18)

with indices 
i ∈ {ψ,φ}, as well as the deviations

Δρ
i = ρ
i − ρ̄
i (19)

from the homogeneous reference densities ρ̄
i . Irrelevant zeroth-order and first-order contri-
butions have been ignored. (Zeroth-order contributions have no effect at all, first-order contri-
butions shift the chemical potential by a constant [115], but vanish after applying the gradient
operator.)

Next, we have to define the fields ψ, �P, and φ in terms of the microscopic densities ρψ and
ρφ. In principle, there are two possibilities for a physical interpretation of the order parameters
in a binary PFC model: the first option is to introduce a shifted rescaled total density field n1 and
a rescaled density difference field n2, defined as n1 = (ρφ + ρψ − ρ̄)/ρ̄ and n2 = (ρψ − ρφ)/ρ̄,
where ρ̄ = ρ̄ψ + ρ̄φ is the total homogeneous reference density [74]. In this case, n1 describes
the structure and n2 the composition of the particle distribution [95]. Here, however, we choose
the second option [77] of letting ψ and φ describe the shifted rescaled densities of the two
different particle species, i.e., the different fields in the theory directly correspond to the two
different particle types. This has the advantage that we can clearly distinguish between an
active field ψ and a passive field φ. The existence of these two options shows the importance
of providing a microscopic derivation for the binary PFC model, since otherwise the physical
interpretation of the fields and therefore the implications of theoretical results for experiments
are not clear.

For the field ρψ, we use the Cartesian orientational expansion [116]

ρψ(�r ,�u) = ρ̄ψ(1 + ψ(�r ) + �P(�r ) ·�u + · · · ), (20)

where

ψ(�r ) =
1

2πρ̄ψ

(∫ 2π

0
dϕ ρψ(�r ,�u)

)
− 1 (21)

is the rescaled shifted density of the active particles and

�P(�r ) =
1

πρ̄ψ

∫ 2π

0
dϕ ρψ(�r ,�u)�u (22)

8
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is their local polarization. The expansion (20), which is equivalent to a Fourier series
[116, 117], is widely used in derivations of field theories for active particles [8, 33, 38]. By
truncating the expansion (20) after the polarization term �P, we are neglecting the contribution
of the nematic order to the free energy (as is common in active PFC models). More general
expressions including the nematic order can be found in references [82–84]. For ρφ, where
an orientational expansion is not required since this field has no orientational dependence, we
simply define

φ(�r ) =
ρφ(�r )
ρ̄φ

− 1. (23)

The next step is the expansion of the ideal gas free energy. If we insert equations (20) and
(23) into equation (16) and expand the result up to fourth order (to allow for stable crystals) in
both fields, we find

βFid =

∫
d2r

(
2πρ̄ψ

(
ψ2

2
− ψ3

6
+

ψ4

12
+

�P2

4

− ψ�P2

4
+

ψ2�P2

4
+

�P4

32

)
+ ρ̄φ

(
φ2

2
− φ3

6
+

φ4

12

))
,

(24)

where we have dropped irrelevant terms of zeroth and first order.
The excess free energy is more difficult to treat. We follow reference [84] and start with

a Fourier expansion of the direct correlation functions. Our treatment of symmetries paral-
lels that of references [8, 33, 34, 38, 39, 82–84], with differences arising from the fact that
not all particles have an intrinsic orientation. Let us consider the direct correlation functions
c
1,...,
n ({�r i}, {ϕi}), where 
1, . . . , 
 j = ψ and 
 j+1, . . . , 
n = φ. Translational and rotational
invariance implies that they can be parameterized as c
1,...,
n({Ri}, {ϕ̃Ri}, {ϕ̃i}) with

�r −�r i = Ri�u(ϕRi), (25)

ϕ̃Ri =

{
ϕ− ϕRi for j � 1,

ϕR1 − ϕRi+1 for j = 0,
(26)

ϕ̃i = ϕ− ϕi. (27)

Note that there is no dependence on ϕ̃i for j = 0 (if 
i = φ for all i in equation (18), then no
functional derivatives with respect to functions depending on ϕ are taken on the right-hand
side, such that the direct correlation function cannot depend on ϕ) or j = 1 (since then there
is no angle ϕ1 and thus equation (27) is undefined). Moreover, translational and rotational
invariance implies that cφφ also does not depend on ϕ̃Ri (there is no angle ϕR2 in this case, such
that, since j = 0, equation (26) is undefined).

The Fourier expansion of the correlation function then reads

c
1,...,
n ({Ri}, {ϕ̃Ri}, {ϕ̃i}) =
∞∑

m1,...,mn−1=−∞

∞∑
m′

1,...,m′
j−1=−∞

cm,m ′

1,...,
n

({Ri}) ei(m·ϕ̃
R
+m′ ·ϕ̃) (28)

with the coefficients

9
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cm ,m ′

1,...,
n

({Ri}) =
1

(2π)n+ j−2

∫ 2π

0
dϕ̃

R

∫ 2π

0
dϕ̃ c
1,...,
n ({Ri}, {ϕ̃Ri}, {ϕ̃i})e−i(m·ϕ̃

R
+m′·ϕ̃),

(29)

the imaginary unit i, and the vectors ϕ̃
R
= (ϕ̃R1 , . . . , ϕ̃Rn−1−δ j0

), ϕ̃ = (ϕ̃1, . . . , ϕ̃ j−1),

m = (m1, . . . , mn−1−δ j0), and m′ = (m′
1, . . . , m′

j−1).
For our purposes, it is sufficient to consider the terms with mi = 0 and m′

i = 0,±1 in
equation (28). The reason why we only need m′

i = 0,±1 is straightforward: we only consider
orientational order parameters of zeroth and first order, which is equivalent to considering only
the zeroth- and first-order contributions in a Fourier expansion of the one-body density [116].
Due to the orthogonality of the basis functions in a Fourier expansion, higher-order contribu-
tions of the direct correlation functions will then vanish after performing the angular integrals
in equation (17).

We now replace Δρψ → ρ̄ψ(ψ + �P ·�u) and Δρφ → ρ̄φφ in equation (17). If we also insert

equation (28) into (17) every term in Fexc will have a prefactor cm ,m ′

1,...,
n({Ri})ei(m·ϕ̃

R
+m ′·ϕ̃). The

next step (which is helpful to illustrate why we can restrict ourselves to mi = 0) is a gradient
expansion, which is used to obtain a local free energy. The general procedure is explained in
appendix A. A gradient expansion corresponds to a Taylor expansion of the spatial Fourier
transformations of these prefactors. This expansion is truncated at zeroth order, except for
terms resulting from the second-order terms in equation (17) that do not involve �P (we assume
gradients of the polarization to be small compared to density gradients), which are truncated
at fourth order. It is common in the literature to gradient expand the second-order contribution
in the functional Taylor expansion up to fourth [95] and the third- and fourth-order contribu-
tions up to zeroth order [97], and it is common in active PFC models to truncate the gradient
expansion at zeroth order for the polarization terms [26]. If we have mi �= 0 for at least one i,
the zero-wavelength component of the prefactors is

1
(2π)n−1

∫ ∞

0
dR

∫ 2π

0
dϕ

R
R1 · · ·Rn−1cm ,m′


1,...,
n
({Ri})ei(m·ϕ̃

R
+m′ ·ϕ̃)e−i�k·�r |�k=�0 = 0,

(30)

where R = (R1, . . . , Rn−1), ϕ
R
= (ϕR1 , . . . ,ϕRn−1 ), �k = (�k1, . . . ,�kn−1), and �r =

(R1�u(ϕR1 ), . . . , Rn−1�u(ϕRn−1 )) are vectors (with the wavenumbers �ki). The only terms for
which nonzero wavenumbers are considered are contributions of the second order in the
functional Taylor expansion (17) (i.e., from cψψ, cψφ, and cφφ) that do not involve �P. The
contributions resulting from cψψ and cψφ vanish when the integral over ϕ is performed if any
mi �= 0, and cφφ has no angular dependence anyway. Consequently, we can restrict ourselves
to m = 0. All superscripts of the expansion coefficients of the direct correlation function from
now on are entries of m ′.

Combining the Fourier and the gradient expansion and performing the angular integrals, we
find

10
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Fexc = −
∫

d2r

(
1
2

(
A1ψ

2 + A2ψ�∇2ψ + A3ψ�∇4ψ + A4�P
2 + A5ψφ+ A6ψ�∇2φ

+ A7ψ�∇4φ+ A8φ
2 + A9φ�∇2φ + A10φ�∇4φ

)
+

1
3

(
A11ψ

3 + A12ψ�P
2

+ A13ψ
2φ+ A14�P

2φ+ A15ψφ
2 + A16φ

3

)
+

1
4

(
A17ψ

4 + A18ψ
2�P2

+ A19�P
4 + A20ψ

3φ+ A21ψ�P
2φ + A22ψ

2φ2 + A23�P
2φ2 + A24ψφ

3 + A25φ
4

))
. (31)

The expansion coefficients A1–A25 are defined in appendix B. They are defined with a prefactor
1/n for terms of nth order in the fields. Defining also B1 = 2πβ−1ρ̄ψ and B2 = β−1ρ̄φ, we find
the complete free energy

F =

∫
d2r

(
B1

(
ψ2

2
− ψ3

6
+

ψ4

12
+

�P2

4
− ψ�P2

4
+

ψ2�P2

4
+

�P4

32

)

+ B2

(
φ2

2
− φ3

6
+

φ4

12

)

− 1
2

(
A1ψ

2 + A2ψ�∇2ψ + A3ψ�∇4ψ + A4�P
2 + A5ψφ+ A6ψ�∇2φ

+ A7ψ�∇4φ+ A8φ
2 + A9φ�∇2φ + A10φ�∇4φ

)
− 1

3

(
A11ψ

3 + A12ψ�P
2

+ A13ψ
2φ+ A14�P

2φ+ A15ψφ
2 + A16φ

3

)
− 1

4

(
A17ψ

4 + A18ψ
2�P2

+ A19�P
4 + A20ψ

3φ+ A21ψ�P
2φ + A22ψ

2φ2 + A23�P
2φ2 + A24ψφ

3 + A25φ
4

))
. (32)

Next, we wish to rewrite the free energy (32) in a more familiar form. In particular, we want to
eliminate terms proportional to ψ3 and φ3. For this purpose, we introduce the rescaled fields

ψ̃ = ψ −Δψ, (33)

φ̃ = φ−Δφ (34)

with the shifts

Δψ =
−12A16A20 + 48A11A25 + 24A25B1 − 16A11B2 − 6A20B2 − 8B1B2

9A20A24 − 144A17A25 + 48A25B1 + 48A17B2 − 16B1B2
, (35)

Δφ =
−12A11A24 + 48A16A17 + 24A17B2 − 16A16B1 − 6A24B1 − 8B1B2

9A20A24 − 144A17A25 + 48A25B1 + 48A17B2 − 16B1B2
. (36)

Note that equations (35) and (36) have their complicated form only due to the presence of
third- and fourth-order contributions in the functional Taylor expansion (17). Otherwise, we
would simply have

Δψ = Δφ =
1
2
. (37)

11
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The general free energy (32) can then be written in the form

F =

∫
d2r

(
1
2
ψ̃
(
ε̃ψ + Ã3(q̃2

ψ + �∇2)2
)
ψ̃ +

Ã17

4
ψ̃4+

Ã4

2
�P2 +

Ã19

4
�P4

+
1
2
φ̃

(
ε̃φ + Ã10

(
q̃2
φ +

�∇2
)2
)
φ̃+

Ã25

4
φ̃4 + ψ̃

(
ε̃coup + Ã7(q̃2

coup +
�∇2)2

)
φ̃ (38)

− 1
3

(
Ã12ψ̃�P

2 + Ã13ψ̃
2φ̃+ Ã14�P

2φ̃+ Ã15ψ̃φ̃
2
)
− 1

4

(
Ã18ψ̃

2�P2 + Ã20ψ̃
3φ̃+ Ã21ψ̃�P

2φ̃

+ Ã22ψ̃
2φ̃2 + Ã23�P

2φ̃2 + Ã24ψ̃φ̃
3

))
,

with the scaled shifted temperatures ε̃i, the wavenumbers q̃i (with i = ψ,φ, coup), and the
rescaled expansion coefficients Ã3–Ã25. All coefficients are listed in appendix C. Note that
the coefficients A20–A24 are not affected by the shifts (such that, e.g., Ã20 = A20). Terms of
zeroth and first order in fields that arise from the redefinition of the fields have been ignored
as they do not contribute to the dynamics. We have also slightly changed the ordering of the
terms compared to equation (32). The advantage of using the form (38) is that we can see some
structure: the first terms up to Ã25φ̃

4/4 are familiar contributions from model 1 (with an addi-
tional contribution Ã19�P4/4) with a free energy that is an even polynomial in ψ̃, φ̃, and �P. Then,
there are terms coupling ψ̃ and φ̃ at linear order in the equation of motion, thereby including
higher-order spatial gradients. We have written them in such a way that they have the same
(Swift–Hohenberg-like) structure as the other linear terms (but without a prefactor 1/2, as this
prefactor would not vanish after the functional derivatives). Note that ε̃coup, unlike ε̃ψ and ε̃φ,
has no ideal gas contribution (see equations (C18)–(C20)) and can therefore, strictly speaking,
not be interpreted as a scaled shifted temperature. Finally, we have terms that lead to nonlinear
couplings between the fields in the equations of motion. These arise from the ideal gas term
(coupling between ψ̃ and �P) and from higher-order contributions in equation (17) (coupling of
all fields).

Next, we turn to the dynamical part. For equation (13), this is rather simple: we insert
the parameterization (23) into equation (13) and make a CMA, i.e., we replace the prefactor
Dβ(1 + φ) by Dβ to arrive at

∂tφ =
Dβ

ρ̄φ
�∇2 δF

δφ
, (39)

which is identical to equation (6) up to rescaling. The situation is more complex for
equation (12), where we can follow references [84, 85]. We insert the parameterization (20),
and use the fact that [84]

δF
δρ(�r ,�u)

=
1

2πρ̄ψ

(
δF

δψ(�r )
+ 2

δF

δ�P(�r )
·�u
)
. (40)

Moreover, we make (as done in reference [85]) the approximation D‖ ≈ D⊥ = D0, such that
DT = D0𝟙. Finally, we make the CMAs Diβ(1 + ψ + �P ·�u) ≈ Diβ (with i = T, R) for the
passive terms in equation (12). Then, equation (12) yields

12
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∂t(ψ + �P ·�u) =
D0β

2πρ̄ψ
�∇2 δF

δψ
+

D0β

πρ̄ψ
�∇2 δF

δ�P
·�u

+
DRβ

2πρ̄ψ
∂2
ϕ

δF
δψ

+
DRβ

πρ̄ψ
∂2
ϕ

δF

δ�P
·�u

− �∇ · (ψ + �P ·�u)v�u. (41)

Integrating equation (41) over ϕ and using ∂2
ϕ(δF/δψ) = 0, ∂2

ϕ�u = −�u,
∫ 2π

0 dϕ �u = �0, and∫ 2π
0 dϕ �u ⊗ �u = π𝟙 gives

∂tψ =
D0β

2πρ̄ψ
�∇2 δF

δψ
− v

2
�∇ · �P. (42)

Similarly, multiplying equation (41) by �u and integrating over ϕ gives

∂t�P =
D0β

πρ̄ψ
�∇2 δF

δ�P
− DRβ

πρ̄ψ

δF

δ�P
− v�∇ψ. (43)

Equations (42) and (43) are equivalent to equations (6) and (7) in reference [85] and, up to
rescaling, identical to equations (1) and (2) in the present work. Note that the coupling term
v0
�∇ · (ψ�P) employed in references [12, 91] does not appear in the derivation presented here.
What is left to do now is nondimensionalization. If we write t = t0 t̃, �r = r0�̃r, ψ̃ = ψ0ψ̃ ,

�P = P0�̃P, φ̃ = φ0φ̃, and F = β−1F̃ with dimensionless time t̃, dimensionless position�̃r, dimen-

sionless free energy F̃, rescaled fields ψ̃ , �̃P, and φ̃, and constants

r0 =
6

√
βÃ2

3

Ã17
, (44)

t0 =
2πÃ3ρ̄ψ

D0Ã17
, (45)

ψ0 = 6

√
1

β2Ã3Ã17
, (46)

P0 =
√

2ψ0, (47)

φ0 = 12

√
Ã17

β4Ã2
3Ã3

25

, (48)

and drop all tildes and underlines, we obtain the free energy

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + Gφ(q2

φ + �∇2)2)φ+
1
4
φ4 + ψ(εcoup + Gcoup(q2

coup + �∇2)2)φ

+
1
2

C1�P
2 +

1
4

C2�P
4 + C3ψ�P

2 + C4ψ
2�P2 + C5�P

2φ+ C6�P
2φ2

+ C7ψ�P
2φ+ a2ψ

2φ+ a3ψφ
2 + a4ψ

3φ+ a5ψ
2φ2 + a6ψφ

3

)
(49)

13
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and the dynamic equations

∂tψ = �∇2 δF
δψ

− v0
�∇ · �P, (50)

∂t�P = �∇2 δF

δ�P
− Dr

δF

δ�P
− v0

�∇ψ, (51)

∂tφ = Mφ
�∇2 δF

δφ
. (52)

Definitions of the nondimensionalized coefficients εi, qi, Gi, C1–C7, a2–a6, v0, and Mφ are
listed in appendix D. Equations (49)–(52) constitute the most general PFC model considered
in this work, which will be referred to as model 3a. Essentially, the rescaling gives us five
free parameters (r0, t0, ψ0, P0, and φ0) that we can use to set five coefficients to one. We have
chosen the prefactors of ψ4/4, φ4/4, and �∇4ψ2/2 in the free energy and the mobilities ofψ and
�P. Thereby, our equations resemble as closely as possible those used in previous work [90].
We have absorbed the prefactors 1/n into the rescaled coefficients (except in cases where the
standard passive PFC model [95] also contains them).

When comparing model 3a to model 1 (equations (9)–(11)), we can note that model 3a only
contains ψ and φ, whereas equations (9)–(11) additionally contain parameters ψ̄ and φ̄ mea-
suring the total particle number. This is a matter of notation and not a physical difference. The
replacements ψ → ψ̄ + ψ and φ→ φ̄+ φ, which are required to obtain equations (9)–(11),
can, mathematically, be made without any problem since they simply correspond to a redefini-
tion of the fields ψ and φ that (since we drop terms up to first order) only affects the nonlinear
terms in equation (49) (of which, in model 1, only ψ4/4 and φ4/4 are left). Physically, how-
ever, there is a lot to unpack here. Often, it is argued that the parameter ψ̄ is a measure for the
total particle number of the species ψ [27, 29]. This, however, is in need of further justification
if the parameter ψ̄ simply arises from a redefinition of ψ that, by itself, does not necessarily
have any physical meaning.

The key to understanding this aspect is the physical interpretation of the constants ρ̄ψ and
ρ̄φ in equations (21) and (23). There are two options, which, for simplicity, we discuss using
equation (23). First, we can choose for ρ̄φ the homogeneous density of the liquid state. In this
case, the total number of the particles of type φ is measured by the parameter ρ̄φ, whereas
the field φ only measures their spatial distribution. The advantage of this approach is that the
density of the homogeneous liquid state is certainly the most natural choice for ρ̄φ. However,
the disadvantage is that, in this case, a change of the total particle number affects almost all
parameters of the PFC model. In many cases, it is desirable to have only one parameter that
corresponds to the total particle number, since this facilitates to study the effects of varying it
by means of, e.g., numerical continuation [78]. What we can make use of here is that ρ̄φ does
not have to be the actual liquid density [95]. In principle—and this is the second option—we
can make any choice that is convenient (although we should ensure that it does not deviate
too much from the actual density to ensure that the functional Taylor expansion (17) can be
truncated). It has also been argued [115] that one can use ρ̄φ to eliminate the φ3 term from the
PFC free energy functional. Namely, if one writes the free energy as

F =

∫
d2r( f (ρφ) + gradient terms) (53)

with a local free energy density f , we can Taylor expand f up to fourth order around ρφ = ρ̄φ
and then choose ρ̄φ in such a way that the third derivative f (3)(ρ̄φ) vanishes. This procedure,
however, is less general than the rescaling of φ employed here since it is not guaranteed that
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there is a density ρ̄φ for which f (3)(ρ̄φ) = 0. For example, in the case of an ideal gas, we have
f (3)(ρφ) = −β−1/ρ2

φ, which does not vanish regardless of the choice of ρ̄φ.
If we use ρ̄ψ and ρ̄φ as adjustable parameters, we could in principle use equation (D18) to

set Mφ = 1, namely by choosing them in such a way that

ρ̄φ
ρ̄ψ

=
2πD
D0

√
Ã25

Ã17
. (54)

We will, however, consider the more general case Mφ �= 1 first (as one generally has to if one
uses the physical densities), and only later set Mφ = 1 to obtain model 1 introduced in section 2.

Once we have fixed ρ̄φ, the total particle number is controlled by
∫

d2r φ. In particular, we
can substitute φ→ φ̄+ φ, where φ̄ is chosen in such a way that

∫
d2r φ = 0. In this case, the

parameter φ̄ is a measure for the total particle number. The same considerations hold for the
field ψ. Further rescalings of the fields ψ and φ that have been made during the derivation to
simplify the free energy functional do not affect these aspects in principle, although they are, of
course, relevant for the quantitative link between the parameters ψ̄ and φ̄ and the total particle
numbers.

4. Approximations and model hierarchy

In section 2, we have introduced the minimal model 1 on phenomenological grounds, whereas
the microscopic derivation in section 3 has led to the very general model 3a. In this section, we
will introduce, step by step, the approximations that are required to obtain model 1. Thereby,
we can get insights into their physical significance. Moreover, we obtain a hierarchy also con-
taining intermediate models which are more general than model 1, but less general than model
3a. These arise if only some, but not all approximations are made. For ease of notation, we will
use ψ and φ instead of ψ̄ + ψ and φ̄+ φ.

When comparing the general free energy of model 3a given by equation (49) and the
corresponding governing equations given by equations (50)–(52) with the minimal model 1
introduced in section 2, we can note that model 3a has six properties not present in model 1:

• A: nonlinear terms coupling ψ and �P.
• B: a nonlinear term proportional to �P4.
• C: nonlinearities coupling ψ and φ (or �P and φ).
• D: gradient terms in the linear coupling of ψ and φ.
• E: a factor Gφ �= 1 in front of the term φ(qφ + �∇2)2φ/2.
• F: a mobility Mφ �= 1 of the field φ.

Apart from the last one, these all affect the free energy. We will now discuss the approxi-
mations that remove these features and thereby lead from model 3a to model 1, thereby also
classifying intermediate models. In general, models with properties A and B will be denoted
by ‘a’, models with property B (but not A) by ‘b’, models without properties A and B by ‘c’,
models with properties C and D by ‘3’, models with property D but without property C by
‘2’ and models without properties C and D by ‘1’. For example, a model with nonlinear cou-
pling but without nonlinearities in �P would be ‘model 3c’. This naming scheme is illustrated
in table 1. Combinations that do not fit into this classification (such as a model that has a non-
linear coupling of ψ and φ but no gradients in the linear coupling) will not be considered, since
their derivation would require keeping some nonstandard third- and fourth-order terms while
dropping some standard second-order ones. Notably, properties A–F all concern the passive
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Table 1. Overview over the various models.

Level of approximation With ψ-�P coupling (a) With �P4 term (b) Without �P4 term (c)

With nonlinear Model 3a Model 3b Model 3c
interaction terms (3) (equation (49)) (equation (68)) (equation (71))

Ramakrishnan–Yussouff Model 2a Model 2b Model 2c
approximation (2) (equation (55)) (equation (69)) (equation (72))

Coupling without Model 1a Model 1b Model 1c
gradients (1) (equation (60)) (equation (70)) (equation (73))

part of the transport equations and not the nonvariational active term. Therefore, our discus-
sion is also relevant for passive PFC models and will be made with a particular emphasis on
the correct passive limit. This gives our results additional significance for applications in mate-
rials science (for example in models for passive liquid crystals doped with spherical particles
[118, 119]). Properties E and F do not give rise to additional terms, such that we will not use
them to specify an additional class of models (apart from the fact that we reserve the name
‘model 1’ for the case Gφ = Mφ = 1).

First, we consider the step from models of type 3 to models of type 2. For this purpose, we
make the Ramakrishnan–Yussouff approximation [120], which is very common in the deriva-
tion of PFC models from (D)DFT and typically made right from the beginning [95]. In this
approximation, the functional Taylor expansion (17) is already truncated at second order. In
other words, the expansion coefficients A11–A25 are all set to zero. The general free energy
(49) then simplifies to

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4 +

1
2
φ(εφ + Gφ(q2

φ + �∇2)2)φ+
1
4
φ4

+ ψ(εcoup + Gcoup(q2
coup + �∇2)2)φ (55)

+
1
2

C1�P
2 +

1
4

C2�P
4 + C3ψ�P

2 + C4ψ
2�P2

)
.

Moreover, as can be seen from the microscopic definitions of the coefficients listed in appen-
dices B–D, the microscopic expressions for the expansion coefficients simplify drastically. For
example, the coefficients C2–C4 now only arise from the ideal gas free energy. The free energy
(55) constitutes model 2a. It is a model of type 2 by the classification introduced above as it
has property D but not property C, and it is a model of type a as it has properties A and B. The
main differences to model 3a are:

• There is no nonlinear coupling between the fields ψ and φ (previously encoded in the
coefficients a2–a6 of model 3a).

• There is no coupling between �P and φ.

This means that both corresponding aspects of model 3a only arise from higher-order con-
tributions in the functional Taylor expansion, and can thus not be obtained within the Ramakr-
ishnan–Yussouff approximation that is usually considered. This shows three advantages of our
approach: first, by considering these higher-order terms, we were able to show that there can be
a direct coupling of �P andφ in a binary mixture of active and passive particles if φ is the passive
field, namely through higher-order effects. Second, we show that models with coupling of �P
and φ but without nonlinear coupling of ψ and φ are not reasonable since these couplings have
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the same physical origin (higher-order terms in equation (17)). Third and most importantly,
the assumption made in model 1 that fields describing two different particle species couple
only linearly (through quadratic terms in the free energy) is quite robust, since nonlinear terms
only arise if we go beyond the approximations PFC models are usually based on. This also
justifies the phenomenological coupling terms used in simpler models such as the one from
reference [78].

We now move further from models of type 2 to models of type 1. For this purpose, we have
to get rid of some higher-order terms in the gradient expansion. To recover model 1, we have
to set A6 and A7 to zero, while keeping all other terms that are of second order in the functional
Taylor expansion (17). A ‘naive’ argument for dropping these two coefficients while keeping
all the others can be found from an expansion in a smallness parameter. Let us assume that
the fields are slowly varying in space, such that terms of order n in gradients are of the order
εn

gr, where εgr is a small dimensionless parameter. Moreover, we assume that the ratio of the
various correlation functions is given by

cψφ
cψψ

≈ cψφ
cφφ

= O(εcor), (56)

where εcor is another small dimensionless parameter. These parameters now have to be tuned in
such a way that terms proportional to ψ�∇4ψ (of order ε4

gr) and φψ (of order εcor) are kept in the

free energy, whereas terms proportional to ψ�∇6ψ (of order ε6
gr) and φ�∇2ψ (of order ε2

grεcor) are
dropped. This can be achieved considering the distinctive limit characterized by the condition

O(εcor) = O(ε4
gr). (57)

To elucidate the physical meaning of the smallness parameter εcor, we consider the random
phase approximation [95]

ci j(�r −�r 1) = −βUi j(�r −�r 1), (58)

where Ui j is the interaction potential between particles of species i and j. Thus, in the sim-
plest case, the direct correlation function depends on the strength of the interaction, i.e., the
assumption (56) implies that the interaction of the particles of different species is weaker than
between particles of the same species. This would imply that model 1 describes a mixture of
active and passive particles where the interaction between different particle types is weaker
than the interactions of the particles of one species among themselves.

The reason why this argument is somewhat naive is that the quantitative predictions obtained
for the PFC model parameters by a derivation from DFT can be quite inaccurate, since the
assumptions made in this derivation (ψ andφ are slowly varying in space) are not really justified
in the case of crystallization [121, 122]. Nevertheless, one can still learn something from such
derivations, since the qualitative predictions and the mathematical structure of the PFC models
so obtained can still be quite accurate [97], and it is the qualitative structure that we are inter-
ested in in the present work. However, it should be noted that in practice, one typically obtains
the coefficients of a PFC model by fitting a fourth-order polynomial to the Fourier-transformed
direct correlation function ĉ(�k) [121] depending on the wavenumber�k. Consequently, dropping
the gradients in the linear coupling is a good approximation as long as it is a good approxi-
mation to replace ĉψφ(�k) by a constant while ĉψψ(�k) and ĉφφ(�k) are fitted with fourth-order
polynomials. This, however, is consistent with the basic conclusion of our ‘naive’ argument,
namely that we can drop the gradient terms if cψφ is small compared to the other correlation
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functions. The reason for this is that, if cψφ is small, any errors we make in fitting this function
(such as replacing it by a constant) are less relevant for the overall accuracy of the free energy
functional we derive.

The direct correlation functions (more precisely: the static structure factors S which can be
calculated from them) are required as an input not only in PFC models, but also in the mode
coupling theory of the glass transition [123]. A mode-coupling theory for a mixture of active
and passive particles has recently been developed by Feng and Hou [13], who obtained the
structure factors via Brownian dynamics simulations. They found that, while the overall shape
of the partial structure factor Sψφ(k) (k = ‖�k‖) is similar to that of the partial structure factors
Sψψ(k) and Sφφ(k), the factor Sψφ(k) is smaller (around zero and even negative for some k).

The Fourier-transformed direct correlation functions are related to the structure factors by
[13]

(
ρψ ĉψψ

√
ρψρφĉψφ√

ρψρφĉψφ ρφĉφφ

)
= 𝟙−

(
Sφφ −Sψφ

−Sψφ Sψψ

)
SψψSφφ − S2

ψφ

. (59)

Equation (59) shows that, if Sψφ is small, then (other things being equal) ĉψφ will also be
small. Consequently, the simulation results from reference [13] support the assumption made
in model 1 that gradient terms in the linear coupling are less important than the other gradient
terms.

Dropping the gradient terms in the coupling in equation (55) thus gives the free energy of
model 1a, i.e.,

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + Gφ(q2

φ +
�∇2)2)φ+

1
4
φ4 + a1ψφ +

1
2

C1�P
2 +

1
4

C2�P
4 + C3ψ�P

2 + C4ψ
2�P2

)

(60)

with the linear coupling parameter

a1 = εcoup + Gcoupq4
coup. (61)

Model 1a still has nonlinear terms proportional to ψ�P2, ψ2�P2, and �P4 that are not present in
model 1. Compared to the interaction-dependent terms, it is more difficult to see how one can
eliminate them given that they arise also from the ideal gas free energy (24). Thus, it looks as
if they are present regardless of the assumptions we make about interactions.

However, the situation is more intricate. If we make the assumption that the interaction does
not depend on the particle orientation as is the case for Brownian spheres, in the passive limit,
the free energy should not depend on �P. In the active case, we can add a term C1�P2/2 with
C1 > 0 to the free energy to account for orientational diffusion (for orientation-independent
interactions, we always have C1 > 0 since C1 then only arises from the ideal gas term). This is
unproblematic for the passive limit since, for v0 = 0, �P does not couple to ψ. Thus, to ensure
the correct passive limit, we should (depending on other choices we make in modeling the
interactions) use model 3c, 2c, or 1c for spherical particles.

What is confusing here is that the limit v0 → 0 based on models of type a does not give us
a model of type c even for orientation-independent interactions, since the terms nonlinear in �P
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and, in particular, the terms coupling ψ and �P are still present. In the ideal gas limit, passive
models of type a give

∂tψ = �∇2(εψψ + ψ3 + C3�P
2 + 2C4ψ�P

2), (62)

∂t�P = (�∇2 − Dr)(C1�P + C2�P
3 + 2C3ψ�P + 2C4ψ

2�P). (63)

Note that taking the ideal gas limit is problematic in the rescaled model also because we have
forced the prefactor of the term ψ�∇4ψ/2 in the free energy, which should be zero in the ideal
gas limit, to be one. We have simply dropped this term in equations (62) and (63), but we now
will turn to the model given by equations (39), (42) and (43) (i.e., the ‘original’ model without
rescaling and nondimensionalization) to discuss the ideal gas limit.

Equations (62) and (63) show that there is still a coupling between �P andψ (which should not
be the case for spheres in the passive limit), and also some nonlinear terms which are obviously
unphysical. Physically, however, we should simply have a linear diffusion equation for ψ. This
is also the result that we would get from DDFT. To see the origin of this problem, it is helpful
to take one step back and consider the single-component PFC model for passive spheres. This
model was discussed in much detail by Archer et al [97], who identified the Taylor expansion
of the logarithm and the CMA as crucial steps that lead to potentially unphysical behavior.
Here, we will briefly discuss the implications of this issue for the dynamics. For the passive
field φ, the model (39) with CMA and free energy (24) gives

∂tφ = D�∇2

(
φ− φ2

2
+

φ3

3

)
. (64)

The result (64) is not correct since, for an ideal gas, the dynamics of φ is simply given by the
standard diffusion equation. If we use the nonconstant mobility 1 + φ obtained from DDFT
instead, we find

∂tφ = D�∇ ·
(

(1 + φ)�∇
(
φ− φ2

2
+

φ3

3

))

= D�∇2

(
φ+

φ2

2
− φ2

2
− φ3

3
+

φ3

3

)
= D�∇2φ, (65)

having used �∇ · (φ�∇φ) = �∇2φ2/2, �∇ · (φ�∇φ2)/2 = �∇2φ3/3 and dropping terms of order φ4.
This is the correct description of the dynamics. If, however, we make a CMA, the only way to
recover the diffusion equation for noninteracting particles is to set F = β−1ρ̄φ

∫
d2rφ2/2.

Similarly, if we describe the field ψ with CMA using equation (42), insert the ideal gas free
energy (24), and set v = 0, we find

∂tψ = D0
�∇2

(
ψ − ψ2

2
+

ψ3

3
−

�P2

4
+

ψ�P2

2

)
. (66)
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Without a CMA one finds3

∂tψ =
D0β

2πρ̄ψ
�∇ ·

(
(1 + ψ)�∇δF

δψ
+

(
�∇δF

δ�P

)
· �P

)

= D0
�∇ ·

(
(1 + ψ)�∇

(
ψ − ψ2

2
+

ψ3

3
−

�P2

4
+

ψ�P2

2

)

+ �P · �∇
(
�P
2
− ψ�P

2
+

ψ2�P
2

+
�P3

8

))

= D0
�∇2ψ,

(67)

where in the last step we have ignored terms of fourth order in the fields. Here, terms coupling
ψ and �P disappear as they should.

When comparing the first equality in equation (67), which (apart from the fact that v = 0)
is the general dynamic equation for ψ without CMA, with equation (42), which is the corre-
sponding result obtained with CMA (and v �= 0), one can note an interesting difference already
mentioned in section 2. Equation (67) does contain an off-diagonal term since δF/δ�P shows
up in the dynamic equation for ∂tψ. This off-diagonal term cancels the unphysical contribu-
tions that the PFC model with CMA contains in the ideal gas limit. Hence, the absence of
off-diagonal terms coupling ψ with the orientational order-parameter field �P in the standard
active PFC model is a consequence of the CMA. Similarly, the governing equation for ψ in a
PFC model for apolar liquid crystals, in which the nematic order parameter is used instead of
the polarization, only contains no off-diagonal term once a CMA has been made. To see this,
compare equations (29) and (37) in reference [81]. Polar liquid crystals with nematic order
parameter were considered with and without a CMA in reference [84].

One might now ask why we do not just stop the Taylor expansion of the logarithm after
the quadratic term, in which case the PFC model gives the correct equation of motion for
the ideal gas limit (i.e., the diffusion equation). The reason is that we also have to ensure the
correct static results in the passive limit: for the passive PFC model, as for the passive DDFT,
the system evolves toward the state that minimizes the free energy functional. Consequently,
whether the phase transitions predicted by the model are correct depends on the accuracy of the
free energy functional, which increases if we take into account higher orders in the expansion
of the logarithm.

A particularly important reason why the higher-order terms can be important is stabiliza-
tion. As an example, let us assume that we can treat interactions in the Ramakrishnan–Yussouff
approximation. In this case, the coefficient C1 has contributions from the ideal gas and excess
free energy, while the coefficient C2 arises solely from the ideal gas free energy. Consequently,
although we certainly have C2 > 0, we might have C1 < 0 if the interactions are sufficiently
strong. In this case, if we drop higher-order terms in the free energy, the polarization would
grow without bounds, which is obviously unphysical. This can be prevented by introducing a
term C2�P4/4, resulting from the ideal gas free energy. In this case, instead of an (unphysical)
blow-up, we get the well known phenomenon of self-polarization [27], which, as is evident

3 To get the first equality of equation (67), replace D0
�∇2 by D0

�∇ · (1 + ψ + �P ·�u)�∇ in equation (41) (with v = 0) and

integrate over ϕ. The term (�∇δF/δ�P) · �P is, in index notation with summation convention, given by (∂iδF/δPj)P j.
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from the microscopic derivation, is only possible for orientation-dependent interactions. Con-
sequently, if the prefactors of the fourth-order terms in equation (49) become negative due to
interactions, it might be necessary to include even more terms in the ideal gas expansion.

For this particular purpose, however, it is sufficient to keep the term C2�P4/4 in addition
to C1�P2/2. Terms coupling ψ and �P, which (in the Ramakrishnan–Yussouff approximation)
only arise from the ideal gas free energy, are almost always ignored in PFC models. While
this is typically done without any justification, we can now give a physical motivation for
such models: they are a compromise between models of type a, where all nonlinear terms
in �P are kept (giving a stable and accurate free energy functional and an incorrect diffusion
equation), and models of type c, which are appropriate for active Brownian spheres. Since they
are in between these two extremes, we call them ‘models of type b’. Type b models cannot be
obtained via a systematic expansion in a smallness parameter, they rather arise as a minimal
model allowing for orientation-dependent interactions. They also come in three forms, with
the most complicated one being model 3b:

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + Gφ(q2

φ +
�∇2)2)φ+

1
4
φ4

+ ψ(εcoup + Gcoup(q2
coup +

�∇2)2)φ (68)

+
1
2

C1�P
2 +

1
4

C2�P
4 + a2ψ

2φ+ a3ψφ
2+ a4ψ

3φ+ a5ψ
2φ2 + a6ψφ

3

)
.

Terms coupling φ and �P have also been dropped (since it is somewhat inconsistent to keep
them if we drop terms coupling ψ and �P). A simpler variant, obtained using a Ramakrish-
nan–Yussouff approximation, is model 2b:

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4 +

1
2
φ(εφ + Gφ(q2

φ +
�∇2)2)φ+

1
4
φ4

+ ψ(εcoup + Gcoup(q2
coup + �∇2)2)φ+

1
2

C1�P
2 +

1
4

C2�P
4

)
. (69)

Finally, by dropping gradients, we can also get model 1b:

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + Gφ(q2

φ + �∇2)2)φ+
1
4
φ4 + a1ψφ+

1
2

C1�P
2 +

1
4

C2�P
4

)
. (70)

Let us now assume that there are no orientation-dependent interactions at all. In this case, C1

is guaranteed to be positive, and there is no need for terms of higher order in �P to ensure
stabilization. On the other hand, as discussed above, these terms give unphysical results in the
ideal gas limit. If we, based on these considerations, drop all terms involving �P apart from
C1�P1/2 in the free energy (49) of model 3a as it is appropriate for active Brownian spheres,
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we are left with model 3c:

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + Gφ(q2

φ +
�∇2)2)φ+

1
4
φ4 + ψ(εcoup + Gcoup(q2

coup +
�∇2)2)φ

+
1
2

C1�P
2 + a2ψ

2φ+ a3ψφ
2

+ a4ψ
3φ+ a5ψ

2φ2 + a6ψφ
3

)
. (71)

The assumption of ‘no orientation-dependent interactions’ deserves some comment, since an
active particle will generally have an asymmetry that corresponds to its direction of self-
propulsion. However, this asymmetry does not have to be a geometric one. A typical example
for an experimental realization of artificial active matter are Janus particles [124, 125], which
can be (but do not have to be) spherical [125, 126]. In a Janus particle, one can have a chemi-
cal instead of a geometric asymmetry [125]. In theoretical studies, ‘active Brownian spheres’
[33, 127, 128] are among the most frequently considered microscopic models for active mat-
ter. See reference [129] for an experimental realization of active Brownian spheres using Janus
particles.

Also making a Ramakrishnan–Yussouff approximation gives model 2c:

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4 (72)

+
1
2
φ(εφ + Gφ(q2

φ +
�∇2)2)φ+

1
4
φ4 + ψ(εcoup + Gcoup(q2

coup +
�∇2)2)φ+

1
2

C1�P
2

)
.

Finally, if we also drop gradient terms in the interaction, we get the simple model 1c:

F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + Gφ(q2

φ +
�∇2)2)φ+

1
4
φ4 + a1ψφ+

1
2

C1�P
2

)
. (73)

Model 1 introduced in section 2 is identical to model 1c apart from the fact that Gφ �= 1 and
Mφ �= 1 in model 1c. In principle, model 1 is ‘only’ a special case of model 1c recovered by
setting the coefficients Gφ and Mφ to one. Recall that we can get Mφ = 1 also by adjusting the
reference densities (see equation (54)). Setting Mφ = 1 and Gφ = 1 and dropping the subscript
‘1’ from a1, equations (50)–(52) and (73) give

∂tψ = �∇2 δF
δψ

− v0
�∇ · �P, (74)

∂t�P = �∇2 δF

δ�P
− Dr

δF

δ�P
− v0

�∇ψ, (75)

∂tφ = �∇2 δF
δφ

, (76)
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F =

∫
d2r

(
1
2
ψ(εψ + (q2

ψ + �∇2)2)ψ +
1
4
ψ4

+
1
2
φ(εφ + (q2

φ + �∇2)2)φ+
1
4
φ4 + aψφ+

1
2

C1�P
2

)
.

(77)

To summarize: model 1 is a PFC model for a mixture of active and passive particles, which
assumes that

• nonlinearities in �P resulting from the ideal gas free energy can be ignored (generalization:
models 3a, 3b, 2a, 2b, 1a, and 1b);

• the excess free energy functional can be obtained from the Ramakrishnan–Yussouff
approximation (generalization: models 3a–3c);

• gradient terms in the coupling can be ignored (generalization: models 3a–3c and 2a–2c);
• the mobilities of ψ and φ are equal;
• the factor Gφ can be set to one (i.e., the prefactor of the gradient terms is equal for both

fields).

We have thus achieved a systematic derivation of the minimal model 1 and identified the
approximations required for obtaining it. Moreover, we have derived and classified more gen-
eral models (3a–3c, 2a–2c, and 1a–1c), which provide a very general description of mixtures
of active and passive particles. An overview over the model hierarchy is given in table 1.

5. Linear stability analysis

Next, we consider the linear stability of uniform states for a mixture of active and passive
particles using the above derived model 1 as given by equations (9)–(11). The limiting case
of a mixture of passive particles can easily be obtained by setting v0 = 0. From now on we
restrict ourselves to one spatial dimension.

Introducing the notation w = (ψ, P,φ)T for the tupel of fields, uniform steady states
w� = (ψ∗, P∗,φ∗)T are characterized by ∂tw = 0. As in equations (9)–(11) the mean densi-
ties are explicitly included as parameters ψ̄ and φ̄, we have ψ∗ = 0 and φ∗ = 0. Furthermore,
P∗ = 0 is the only homogeneousstationary solution of equation (10). To obtain the linear stabil-
ity of the uniform states, equations (9)–(11) are linearized in small perturbations about (0, 0, 0)T

using the ansatz

w = δw eikx+λt (78)

with growth rate λ. This yields

λ δw = J δw (79)

with the matrix

J =

⎛
⎝ Jψ −iv0k −ak2

−iv0k Jp 0
−ak2 0 Jφ

⎞
⎠, (80)

where

Jχ(k) ≡ −k2
(
εχ + (q2

χ − k2)2 + 3(χ∗)2
)

(81)
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for χ = ψ,φ and

Jp(k) ≡ −C1k2 − DrC1. (82)

The condition det(J − λ𝟙) = 0 leads to the cubic equation

−λ3 + α1λ
2 + α2λ+ α3 = 0, (83)

where

α1(k) ≡ Jψ + Jφ + Jp, (84)

α2(k) ≡ −
(
(Jψ + Jφ)Jp + JψJφ + v2

0k2 − a2k4
)
, (85)

α3(k) ≡ JψJφJp + v2
0k2Jφ − a2k4Jp. (86)

The solution of the cubic equation (84) can be determined by del Ferro–Tartaglia–Cardano’s
method. Due to the complexity of the analytical solution, the equation is numerically solved
using Python.

The real parts Re(λ) of dispersion relations λ j(k) with j = 1, 2, 3 are displayed in figure 1
for four exemplary parameter choices. In figure 1(a), a case of low activity v0 = 0.05 is given
where a monotonic small-scale instability occurs, i.e., above instability onset, where a single
mode of wavenumber kc �= 0 (the critical value) becomes unstable, a finite band of unsta-
ble wavenumbers exists centered about kc. In a direct time simulation this produces a resting
crystal (not shown). A decrease in the effective temperature εψ will widen the band of unsta-
ble wavenumbers. A case of higher activity v0 = 0.4 is presented in figure 1(b). Again, a
small-scale instability arises (finite band of unstable k centered about kc �= 0), however, the
instability is now oscillatory. A time simulation produces a traveling periodic state, i.e., a trav-
eling crystal (not shown). Both cases presented in figures 1(a) and (b) are also encountered in
one-component active PFC models [27]. This does not apply to the remaining cases of figure 1.
In particular, figure 1(c) shows a case of small activity v0 = 0.05 where two monotonic modes
are unstable. This is also found in the limiting case of a PFC model for a mixture of passive par-
ticles [78]. Increasing the activity to v0 = 0.4 renders one of these unstable modes oscillatory,
as presented in figure 1(d).

Note that an increase in the linear coupling between the densities ψ and φ generally results
in a further destabilization. This can already be anticipated inspecting the dispersion relation
in the passive limit that reads [78]

λ±(k) =
Jψ + Jφ ±

√
(Jψ − Jφ)2 + 4a2k4

2
. (87)

There, increasing the coupling strength a, always results in an increase of the largest eigen-
value λ+.

6. Nonlinear states

In this section, we present selected fully nonlinear states as obtained by numerical path contin-
uation [130, 131], as well as results of direct time simulations. Thereby, the focus is on effects
that are not seen in the standard one-component active PFC model. For the path continuation
we employ the package pde2path [132] while all time simulations are performed using a semi-
implicit Euler scheme with adaptive step size. All results from time simulations are presented
after initial transients have decayed. In the following, we only consider the particular case of
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Figure 1. Dispersion relations with black solid [red dashed] lines corresponding to real
[complex] eigenvalues. The dispersion relations presented in (a) and (b) show instabil-
ities similar to the ones typical for a one-component active PFC model [27]: (a) gives
a monotonic small-scale instability at ψ̄ = φ̄ = −0.7, qψ = qφ = 1, and v0 = 0.05; (b)
presents an oscillatory small-scale instability at ψ̄ = −0.55, φ̄ = −1.5, qψ = qφ = 1,
and v0 = 0.4; (c) exhibits two monotonic instability modes at ψ̄ = −0.6, φ̄ = 0, qψ =
0.5, qφ = 1, and v0 = 0.05; (d) shows a case with a monotonic and an oscillatory
instability mode at ψ̄ = −0.5, φ̄ = 0, qψ = 0.5, qφ = 1, and v0 = 0.4. The remaining
parameters are εψ = εφ = −1.5, a = −0.2, Dr = 0.5, and C1 = 0.1.

equal temperature parameters εψ = εφ, and equal critical wavenumbers qψ = qφ = 1 for the
active and passive particles, and drop the subscripts accordingly.

First, we determine resulting states in the passive limit v0 = 0. The corresponding phase
diagram in figure 2 is quite similar to the one presented in reference [78]. Pairs of thermo-
dynamically stable coexisting phases lie on the black binodal lines. Note that, for clarity,
in figure 2 we only present thermodynamically stable coexistence and omit metastable and
linearly unstable coexistence. Particular coexisting states with equal chemical potentials and
pressure on two binodals are connected by gray tie lines. Within the hatched region, uni-
formly homogeneous and patterned states are unstable w.r.t. phase separation resulting in
coexistence of the two bordering phases. The two gray triangles mark regions where phase
separation into three phases occurs. Overall, figure 2 shows four thermodynamically sta-
ble liquid (homogeneous) and crystal (periodic) phases. At low densities ψ̄ and φ̄, the liq-
uid state is the globally stable state. In the top left and bottom right corners of the shown
range, one of ψ̄ and φ̄ is high while the other one is low, resulting in a crystal state of
the particles with the high density, while the other particles are in a weakly modulated liq-
uid state. When ψ̄ and φ̄ are both large, the resulting state is a crystalline alloy: both fields
show peaks of similar amplitudes that are in phase. For a deeper discussion of such phase
diagrams, see reference [78]. Using the phase diagram in figure 2 for the passive mixture
as reference, we analyze the bifurcation behavior in the active case: fixing the activity at
v0 = 0.23, 0.3, or 0.4, we consider two paths through parameter space. First, we vary ψ̄ at
fixed φ̄ = 0 (figures 3–6) and second we consider the path defined by φ̄ = ψ̄ (figure 7).
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Figure 2. Phase diagram of the PFC model for a mixture of passive particles (v0 = 0)
in 1D displayed in the (ψ̄, φ̄)-plane at ε = −1.5. Four phases (liquid, alloy, ψ-crystal, φ-
crystal) can be distinguished. The binodal lines are marked in black. Coexisting states on
the binodals are connected by gray tie lines. The thus hatched areas correspond to two-
phase coexistence of adjacent phases. Three-phase coexistence is indicated by triangular
gray shaded areas. The binodals and tie lines are only presented for thermodynamic
coexistence, not for metastable or linearly unstable coexistence. Along the horizontal
blue line, the bifurcation diagrams in figures 3, 5 and 6 are presented, while the diagonal
blue line denotes the path corresponding to figure 7. The remaining parameters are as in
figure 1.

All resting states w = (ψ, P,φ)T are characterized by their L2 norm

‖w‖ =

√
1
L

∫ L/2

−L/2
dx (ψ2 + P2 + φ2) (88)

with the domain length L. Traveling and oscillating states are characterized by the temporal
average of ‖w‖.

At small activity v0, the overall structure of the bifurcation diagrams is very similar to the
one in the passive limit (see, e.g., figures 8 and 9 of reference [90]). With increasing activity,
the parameter range where LSs exist slightly decreases [90].

Here, we first consider states at fixed mean density φ̄ = 0 where the field φ is in the periodic
crystalline state. That is, it provides a periodic background on which, for increasing mean den-
sity ψ̄, LSs, i.e., crystallites in ψ, grow. Although the periodic background influences where
the active particles prefer to be, it is not entirely static as it is also influenced by the active
particles. The particular results for v0 = 0.23 are summarized in figure 3. At low densities ψ̄,
resting periodic states exist. They are destabilized at ψ̄ ≈ −0.753 in a Hopf bifurcation, marked
by the leftmost diamond symbol in the upper left inset of figure 3. After further destabiliza-
tion by another Hopf bifurcation at ψ̄ ≈ −0.750, a subcritical pitchfork bifurcation occurs at
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Figure 3. Bifurcation diagram showing branches of one-dimensional states of the PFC
model 1 (9)–(11) for coupled active and passive particles. Shown is the L2 norm ‖w‖ as
a function of the mean density ψ̄ at fixed φ̄ = 0 and activity v0 = 0.23. Solid [dashed]
lines indicate linearly stable [unstable] states. The blue line corresponds to crystalline
(periodic) states with n = 8 peaks. The intertwined light and dark purple lines represent
the slanted snaking of branches of LSs with odd and even number of peaks, respectively.
They are interconnected by branches of asymmetric states (black lines). The branch of
steadily traveling periodic states is given as orange line. The various states obtained
by time simulations are indicated by symbols according to table 2. The insets magnify
regions where the branch of resting periodic states changes stability. Hopf bifurcations
occurring on this branch are marked by diamonds. Figure 4 shows selected space-time
plots at the locations marked by letters ‘a’–‘c’. The corresponding symbols are enlarged
and red. The remaining parameters are ε = −1.5, q = 1, a = −0.2, Dr = 0.5, and C1 =
0.1. The domain size is fixed at L = 16π. Note that the data and code to reproduce this
bifurcation diagram and the following bifurcation diagrams and space-time plots are
available in the supplementary material in reference [139].

ψ̄ ≈ −0.735. There, two branches of symmetric LSs emerge with respective odd and even
number of peaks. Both branches of symmetric LSs are initially unstable. On each branch a
series of Hopf bifurcations occurs before the first saddle-node bifurcation (not shown) render-
ing the LS less unstable. The branches of symmetric LSs are interconnected by ladder branches
of asymmetric LSs that emerge in pitchfork bifurcations. As one moves along the branches of
symmetric LSs consecutively, pairs of additional peaks are added. Note that, in contrast to
the behavior in the passive limit at the same temperature (not shown), this does not involve
saddle-node bifurcations. Similar slanted snaking behavior is observed at higher effective tem-
perature in the passive limit of the one-component PFC model (see, e.g., references [90, 99]).
Between ψ̄ = −0.743 and ψ̄ = −0.537, both branches of symmetric LSs undergo Hopf and
pitchfork bifurcations. As a result, they change stability in such a way that always at least one
of them is linearly stable.

When the whole domain has filled with density peaks, the branches of symmetric LSs
reconnect at ψ̄ = −0.564 to the branch of periodic states. This branch regains stability at
ψ̄ = −0.512 after undergoing three further Hopf bifurcations, visible in the lower right inset
of figure 3. Further following the branch, at ψ̄ = −0.234 it becomes unstable again in a
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Figure 4. Panels (a) to (c) show space-time plots of the densities of active (ψ(x, t)) and
passive (φ(x, t)) particles at the locations indicated by corresponding letters in figure 3
(after transients have decayed). Panels (a) and (b) show alternating LSs in the interval
t = [0, 500]. Due to the slower dynamics, the interval in panel (c) is t = [0, 1000],
showing alternating traveling LSs.

drift pitchfork bifurcation where a branch of steadily traveling periodic states emerges. Time
simulations performed in the parameter range of figure 3 converge to states as indicated by
symbols according to table 2. Note that their loci sometimes coincide with the shown branches
obtained by continuation although they represent other (time-periodic) states.

The panels in figure 4 show space-time plots of the density of the active species ψ and the
passive species φ after transients have decayed. In particular, we show three states that have
not yet been described and may not exist for the one-component active PFC model [27, 29]. At
φ̄ = 0, the passive backgroundφ(x, t) is periodic, in the considered domain this corresponds to
a periodic solution with n = 8 peaks. Figures 4(a) and (b) show time-periodic states where the
passive background is nearly steady: it only shows small oscillations as reaction to the large
amplitude oscillations in the LS in ψ.

Figure 4(a) shows an oscillating LS in ψ on a periodic background in φ. Thereby, each indi-
vidual peak oscillates like a standing wave, with neighboring peaks oscillating in anti-phase.
With other words, active particles alternately co-occupy neighboring sites where passive parti-
cles are located. The behavior is strongest at the center of the LS while oscillation amplitudes
become smaller as one moves toward the outside tails of the LS. Overall, the structure resem-
bles a spatially localized space-time checkerboard pattern, somewhat similar to the modulated
standing waves in reference [133]. We call it an alternating LS.

Figure 4(b) shows an alternating LS at higher ψ̄ that accordingly has a larger spatial exten-
sion than the one in figure 4(a) and nearly fills the domain. Another consequence is the much
smaller amplitude of the oscillations at the center of the LS as compared to the larger amplitude
at the fringes. With other words, the three central sites of the passive background are always
co-occupied by active particles, forming a nearly steady core, while the sites further from the
center show oscillating occupancy by active particles. Note that in figure 3 one also finds fully
spatially periodic (not localized) variants of such an alternating state. They are marked by filled
squares, and a typical space-time plot is given in figure 5(e) (see below).
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Figure 5. Bifurcation diagram as a function of the mean density ψ̄ at fixed activity
v0 = 0.3. The model, solution measure, remaining parameters, symbols, and line styles
are as in figure 3, while the insets show space-time plots as in figure 4(a), however, only
showing the density of the active particles ψ.

Figure 4(c) presents a qualitatively different state that features a slowly traveling passive
background ϕ(x, t). At the same time, the LS in ψ(x, t) alternately oscillates and travels at a
faster speed into the opposite direction than the passive background. Similar to figure 4(b),
the (now traveling) LS almost fills the domain and the amplitude of the oscillations is much
smaller at the center than at the edges of the LS. The LS travels by gaining density on one
side and losing it on the other. The sites further away from the center of the LS again show
alternately oscillating occupancy.

The various described patterns dominate in different regions of the snaking structure in
figure 3. Thereby, time simulations result in steady LSs in the central region in the range
−0.698 � ψ̄ � −0.581, while closer toward the ends of the snaking structure oscillatory states
dominate. This can be seen in the magnifications shown as insets in figure 3.

Results for a slightly higher activity v0 = 0.3 are presented in figure 5. For this value, all
branches of steady LSs have vanished, i.e., we are in a region analogous to the one above the
final cusp in figure 12 of reference [90]. The periodic steady state is linearly stable at low
densities as before. It becomes unstable via a Hopf bifurcation at ψ̄ ≈ −0.717. Furthermore,
at ψ̄ ≈ −0.512 a branch of traveling periodic states emerges in a supercritical drift pitchfork
bifurcation. It is initially unstable but eventually stabilizes through a series of Hopf bifurca-
tions with the final one occurring at ψ̄ ≈ −0.434. Employing numerical path continuation of
steady states, here, we only access resting and steadily traveling states. In the ψ̄-range where
all of these states are unstable, we determine the system behavior by direct time simulations.
As a result, we find five types of standing, traveling, and modulated traveling wave states,
exemplified in the space-time plots in the insets of figure 5.

At high densities, two kinds of traveling states exist and coexist: inset 5(a) shows a steadily
traveling periodic state, also obtained by continuation. The second kind, presented in inset 5(b),
consists of oscillating direction-reversing periodic states. The wiggling back and forth motion
of density peaks is overlaid by a slow drift of the entire pattern. This is akin to the oscillating
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Figure 6. Bifurcation diagram as a function of the mean density ψ̄ at fixed activity
v0 = 0.4. The two insets show space-time plots of the active and passive densities (upper
panel:ψ(x, t); lower panel:φ(x, t)) at the marked locations in an interval t = [0, 500] after
initial transients have decayed. The model, solution measure, remaining parameters,
symbols, and line styles are as in figure 3, while the insets are as in figure 4(a).

direction-reversing LSs found in reference [29] (see their figure 11(a)), albeit there they do
not show an additional drift. Most likely, the corresponding branch emerges from the branch
of steadily drifting states via a Hopf bifurcation. Note that there is a range of multistability.
Another type of wiggling state is presented in inset 5(c). There, two patches of wiggling peaks
(having three peaks each and wiggling in anti-phase) are separated at the center and at the
(periodic) boundary by a respective localized oscillating one-peak state. Thereby, the two one-
peak states communicate via the wiggling patches such that together they form an alternating
space-time pattern, similar to neighboring peaks in figure 3. At first sight, the space-time plot
in inset 5(d) seems to show a similar state. However, there, the fast interrelated oscillating
and wiggling pattern is furthermore modulated by a slower oscillation, i.e., there is a second,
lower frequency, i.e., a Hopf bifurcation is the most likely transition scenario. Finally, inset
5(e) represents a fully space-time periodic checkerboard pattern where each peak oscillates
and neighbors alternate in their oscillation.

Note that for all time-periodic states shown in the insets 5(a)–(d), the density of the passive
particles φ normally closely follows the one of the active species ψ. An exception are nearly
static density peaks in φ whose sites are co-occupied by the oscillating peaks in ψ in insets
5(c)–(e).

Next, in figure 6 we present the results at the highest here considered activity, v0 = 0.4.
As in figure 5, branches of resting and traveling periodic states are obtained by numerical
continuation. The resting states are linearly stable at low densities ψ̄, and become unstable via a
Hopf bifurcation at ψ̄ ≈ −0.656. Twelve further Hopf bifurcations occur along the branch (not
shown). Then, at ψ̄ ≈ −0.486 a branch of unstable steadily traveling periodic states emerges in
a subcritical drift pitchfork bifurcation. In contrast to the case of figure 5, this branch remains
unstable. Again, this leaves a large ψ̄-range where all steady states are unstable and we resort
to time simulations. At low densities, the time simulations produce the expected steady states.
Directly beyond the first Hopf bifurcation, alternating periodic states are found similar to the
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Table 2. The various observed states and the symbols by which they are marked in the
bifurcation diagrams in figures 3 and 5–7.

State Marker

Resting (periodic or LS) ×
Traveling periodic �
Traveling LS �
Traveling periodic, 2 speeds �
Traveling LS, 2 speeds �
Alternating periodic �
Alternating LS �
Alternating traveling LS �
Wiggling, alternating periodic 	
Wiggling, alternating LS ♦
Wiggling, alternating, 2 periods
Wiggling, traveling periodic •
Traveling wiggling LS + alternating LS ◦
Irregular �

ones presented in figure 5(e). Above ψ̄ = −0.6, two kinds of traveling states are found not
known from the cases of lower activity. Both have in common that the passive background
performs a wiggling back-forth motion, overlaid by a slow drift of the whole pattern, similar
to figure 5(b). The active particles, however, move at a much larger speed in the same direction.
The wiggling motion of the background is then due to a time-periodic pull the active particles
(ψ) exercise onto the passive particles (φ). At densities between ψ̄ ≈ −0.6 and ψ̄ ≈ −0.44 the
active particles (ψ) organize into localized density peaks. Inset 6(a) shows such a state with
three localized density peaks of ψ (in red) that repeatedly move through the domain, and the
background of passive particles (φ, in blue) moving much slower. The number of peaks in ψ
increases with ψ̄, until the whole domain is filled with density peaks. An example of such a
traveling periodic state with different speeds of the active and passive particles is presented in
inset 6(b). For both, localized and periodic traveling states with two speeds, the speeds increase
with increasing mean density ψ̄.

Finally, in figure 7 we return to the lower activity of v0 = 0.3 and analyze states occurring
along the line through the phase diagram (figure 2) defined by ψ̄ = φ̄. Contrary to the pre-
vious case where we had fixed φ̄ = 0, now the passive species no longer provides a periodic
background. Instead, it shows similar density profiles as the active species. At low densities
ψ̄ = φ̄, the uniform liquid state is linearly stable. It is destabilized in a supercritical pitchfork
bifurcation at ψ̄ = φ̄ ≈ −0.721, where the branch of resting periodic states with n = 8 peaks
emerges. Close to onset, these states are linearly stable, but very soon loose stability in a sec-
ondary pitchfork bifurcation at ψ̄ = φ̄ ≈ −0.72. There, two branches of symmetric resting LSs
emerge subcritically, with an odd and even number of peaks, respectively. Both branches are
initially unstable. The branch of odd LSs gains stability in a saddle-node bifurcation where it
folds back toward higher densities. The branch of even LSs gains stability after a saddle node
bifurcation and a pitchfork bifurcation, where the first of the ladder branches of asymmetric
LSs emerges. Similar to the passive limit, the two branches of symmetric LSs undergo slanted
snaking involving a series of saddle-node and pitchfork bifurcations. The latter produce in
total five branches of asymmetric LSs. The branches of resting symmetric LSs reconnect to
the branch of resting periodic states at ψ̄ = φ̄ ≈ −0.486 when the whole domain is filled with
peaks. In figures 3, 5 and 6, all LSs consist of crystalline patches of the active species (ψ) on
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Figure 7. Typical bifurcation diagram as a function of the mean densities ψ̄ = φ̄ at fixed
activity v0 = 0.3. The light blue line corresponds to liquid (uniform) states. The model,
solution measure, remaining parameters, symbols, and line styles are as in figure 3, while
the insets are as in figure 4(a), i.e., only show the density of the active particles ψ.

a periodic background of the passive species (φ). Here, all LSs are crystalline patches of an
alloy of the passive and active species in a liquid background.

In contrast to the passive limit, at the chosen activity only the sub-branches of symmetric
LSs with one, two, and three peaks are linearly stable, as further up each branch undergoes more
than 30 Hopf bifurcations. The highest density for which resting LSs exist is ψ̄ = φ̄ ≈ −0.741.
Also the steady periodic states undergo further bifurcations: at ψ̄ = φ̄ ≈ −0.598 a branch of
steadily traveling periodic states emerges in a supercritical drift pitchfork bifurcation. Initially
it is unstable, but after undergoing a total of ten Hopf bifurcations it gains stability in a final
one at ψ̄ = φ̄ ≈ −0.485. There is also a period-doubling pitchfork bifurcation on the branch
of steadily traveling periodic states, where a branch of drifting states emerges, that are never
stable and not shown here.

As before, this leaves a density range, where no resting or steadily traveling states exist.
Resorting to time simulations, at low densities up to ψ̄ = φ̄ = −0.76 we recover first steady
periodic states and then steady odd LSs. At higher densities, there are alternating LSs (not
shown here), similar to those in figures 3 and 4, albeit on a liquid background. At a slightly
higher mean density, inset 7(a) shows a state combining two localized patches of different
states encountered before: at the center of the domain is a single wiggling peak performing
a back-forth motion without net drift, while on the (periodic) boundary a single peak of the
active species oscillates, i.e., behaves like a standing wave. Similar to the behavior of their
domain filling variants, seen in figure 5, the passive density peak at the center closely follows
the wiggling motion, while the passive density peak on the boundary only oscillates with a
very low amplitude.

Another combination of two localized patches of alternating and wiggling LSs is presented
in inset 7(c). There, a patch of two wiggling peaks coexists with a patch of an alternating LS
with three peaks. This is furthermore overlaid by a very slow drift of the entire pattern. Note
that the two outer peaks of the alternating LS are not at an equal distance to the wiggling LS.
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Because of this, both patches of LS are asymmetric, in contrast to those in inset 7(a) that show
a distinct spatio-temporal symmetry. Inset 7(b) shows an example of the irregular, potentially
chaotic states indicated by star symbols in the main panel of figure 7. Here, we do not analyze
these states further. Lastly, inset 7(d) gives a steadily traveling state consisting of a combina-
tion of two different LSs, with two and four peaks, respectively. The whole pattern moves at
a constant speed with the passive density closely following the active one. Similar to the pas-
sive limit, at high densities the entire domain is filled with density peaks. There, only steadily
traveling periodic states are found.

7. Conclusions

We have discussed a hierarchy of active PFC models that represent continuum descriptions
for a mixture of active and passive colloidal particles at different levels of approximation.
First, we have presented a systematic microscopic derivation of a very general PFC model
(model 3a) from a DDFT, i.e., a microscopic continuum description that itself may be derived
from a microscopic particle-based description [54]. The derivation we have presented here
includes a systematic treatment of the relevant orientational degrees of freedom. Thereby, our
particular interest has been on the establishment of the nonlinear and coupling terms. Then, we
have employed a series of approximations that have a clear physical meaning and motivation
to simplify the general PFC model. Passing through these approximation steps, a hierarchy
of models (models 3a-1c) has been established that allows for interesting insights into the
microscopic justification of constructions used in various PFC models for active particles and
mixtures, the approximations required for obtaining them, and possible generalizations. The
minimal model (model 1) indeed corresponds to the one constructed and analyzed in reference
[90] by purely phenomenological means.

Note that, in passing, the presented derivation has also recovered a number of related models
and contributed to the understanding of the employed approximations and their limitations.
Namely, when eliminating the passive species from model 1 one obtains the active PFC model
for a single species of active colloidal particles derived and analyzed in references [26–29, 85,
92]. Furthermore, a PFC model for a mixture of passive particles with a linear coupling between
the two fields [78] (also see section 4.1 in reference [90]) is recovered when taking model 1 in
the limit of vanishing activity. Note that this has allowed us to use the phase diagram obtained
in reference [78] as a reference for the analysis of the parameter space. This implies that the
various models 2 and 3 may in the passive limit be used as more exact models for mixtures of
passive particles, the most precise being model 3a with v0 = 0. (Note, however, that a coupling
to �P should not be present in the passive limit for spherical particles, see section 4.) In this
way one may, e.g., obtain a model closely related to the one derived in reference [77]. There,
however, four-point correlations were not included. In contrast, the present model 3a contains
entropic and enthalpic fourth-order terms in the free energy functional.

In the second part of this work, we have restricted our attention to the derived minimal
model 1. Linear stability analysis of the trivial uniform state at different mean concentrations
has shown that it may become unstable to either a monotonic or an oscillatory small-scale
instability similar to the one-component active PFC model [27]. The difference is that now
there can be two instability modes at similar or different wavenumbers active at the same time.
These may be two monotonic modes or a monotonic and an oscillatory mode.

Beside the linear considerations, we have employed numerical continuation and time sim-
ulation methods to investigate the fully nonlinear regime. Thereby, the use of the former
has allowed us to determine branches of periodic and localized steady and steadily travel-
ing states. These can form the intricate intertwined slanted snaking structures expected for
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Swift–Hohenberg-type systems [134, 135] with conservation laws [90, 99, 136]. However, in
contrast to classical (conserved) Swift–Hohenberg-type systems, that are normally variational
and therefore do only allow for steady states, here activity supports several types of standing,
traveling, and modulated periodic and localized wave patterns. For instance, we have described
direction reversing traveling periodic and LSs that we have called ‘wiggling states’ as in ref-
erence [29] (where also other names and references for these states are given). Another state
are spatio-temporal patterns where individual peaks behave like a standing wave and neighbor-
ing peaks show alternating (or anti-phase) oscillations. This resembles the modulated standing
waves described in reference [133] and has to our knowledge not yet been described for PFC
systems. Here we have encountered such states in spatially periodic and localized versions. A
recent study of nonreciprocally coupled Cahn–Hilliard equations reports on LSs whose outer
peaks oscillate asymmetrically or symmetrically either in phase or in anti-phase [137]. Further-
more, the different regular spatio-temporal patterns can coexist in different regions of space,
thereby giving rise to more intricate behavior. Transitions to seemingly irregular behavior have
also been observed.

A systematic investigation of the transitions between the various time-dependent states has
been outside the scope of the present work, but forms a formidable future challenge. Further
possible extensions of this work include detailed comparative investigations of the more gen-
eral models. An important remaining question is whether the minimal model 1 is already able to
describe all states occurring in model 3a including their stability and sequence of appearance.
Moreover, one could extend the derivation by incorporating also the nematic order parameter
(as done in previous derivations for passive models [81–84]) or particle inertia (as done for
a single-species model in references [88, 89]), or by considering a mixture of two different
active species [138].
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Appendix A. Gradient expansion

Here, we briefly explain the method of gradient expansions [140]. We have to deal with terms
of the form

∫
d2r

∫
d2r1g(�r )h(�r 1) f c(R), (A1)

where g, h ∈ {ψ,φ, Px, Py}, fc is a function (in our derivation arising from a Fourier expansion
of the direct correlation function), and R = ‖�r −�r 1‖ with the Euclidean norm ‖ · ‖. This is
done in the standard way

∫
d2r

∫
d2r1g(�r )h(�r 1) f (R)

=
1

2π

∫
d2r

∫
d2r1

∫
d2kg(�r )h(�r 1) f̂ (�k)ei�k·(�r−�r 1)

≈ 1
4π2

∫
d2r

∫
d2r1

∫
d2kg(�r )h(�r 1)( f̂ 0 − f̂ 2k2 + f̂ 4k4)ei�k·(�r−�r 1)

=
1

2π

∫
d2r

∫
d2kg(�r )ĥ(�k)( f̂ 0 − f̂ 2k2 + f̂ 4k4)ei�k·�r

=

∫
d2rg(�r )( f̂ 0 + f̂ 2

�∇2 + f̂ 4
�∇4)h(�r ) (A2)

where

f̂ (�k) =
1

2π

∫
d2r f c(‖�r‖)e−i�k·�r (A3)

is the Fourier transform of fc. After the ≈ sign in equation (A2), we have Taylor expanded
f̂ (�k) up to fourth order in �k about �k = �0, writing the second-order term with a minus sign and
absorbing a factor 2π into the expansion coefficients for later convenience, and taking into
account the symmetries arising from the fact that f depends only on R. Note that for terms
involving �P and for terms of higher than second order in the functional Taylor expan-
sion (17), only the zeroth-order contribution is considered. The expansion coefficients are
given by

f̂ 0 = 2π
∫ ∞

0
dR R f c(R), (A4)

f̂ 2 =
π

2

∫ ∞

0
dR R3 f c(R), (A5)

f̂ 4 =
π
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∫ ∞

0
dR R5 f c(R). (A6)
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Appendix B. Expansion coefficients in equation (31)

The expansion coefficients in equation (31) are given by4

A1 = 8π3β−1ρ̄2
ψ

∫ ∞

0
dR Rc0

ψψ(R), (B1)

A2 = 2π3β−1ρ̄2
ψ

∫ ∞

0
dR R3c0

ψψ(R), (B2)

A3 =
π3

8
β−1ρ̄2

ψ

∫ ∞

0
dR R5c0

ψψ(R), (B3)

A4 = 2π3β−1ρ̄2
ψ

∫ ∞

0
dR R(c1

ψψ(R) + c−1
ψψ(R)), (B4)

A5 = 8π2β−1ρ̄ψρ̄φ

∫ ∞

0
dR Rcψφ(R), (B5)

A6 = 2π2β−1ρ̄ψρ̄φ

∫ ∞

0
dR R3cψφ(R), (B6)

A7 =
π2

8
β−1ρ̄ψρ̄φ

∫ ∞

0
dR R5cψφ(R), (B7)

A8 = 2πβ−1ρ̄2
φ

∫ ∞

0
dR Rcφφ(R), (B8)

A9 =
π

2
β−1ρ̄2

φ

∫ ∞

0
dR R3cφφ(R), (B9)

A10 =
π

32
β−1ρ̄2

φ

∫ ∞

0
dR R5cφφ(R), (B10)

A11 = 16π5β−1ρ̄3
ψ

∫ ∞

0
dR

∫ ∞

0
dR′ RR′c0,0

ψψψ(R, R′), (B11)

A12 = 4π5β−1ρ̄3
ψ

∫ ∞

0
dR

∫ ∞

0
dR′ RR′(c0,1

ψψψ(R, R′) + c0,−1
ψψψ(R, R′)

+ c1,0
ψψψ(R, R′) + c−1,0

ψψψ(R, R′) + 2c1,−1
ψψψ(R, R′)), (B12)

A13 = 24π4β−1ρ̄2
ψρ̄φ

∫ ∞

0
dR

∫ ∞

0
dR′ RR′c0

ψψφ(R, R′), (B13)

A14 = 6π4β−1ρ̄2
ψρ̄φ

∫ ∞

0
dR

∫ ∞

0
dR′ RR′

(c1
ψψφ(R, R′) + c−1

ψψφ(R, R′)), (B14)

A15 = 12π3β−1ρ̄ψρ̄
2
φ

∫ ∞

0
dR

∫ ∞

0
dR′ RR′c0

ψφφ(R, R′), (B15)

4 We write R, R′, . . . instead of R1, R2, . . . .
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A16 = 2π2β−1ρ̄3
φ

∫ ∞

0
dR

∫ ∞

0
dR′ RR′cφφφ(R, R′), (B16)

A17 =
64
3
π7β−1ρ̄4

ψ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′c0,0,0

ψψψψ(R, R′, R′′), (B17)

A18 =
16
3
π7β−1ρ̄4

ψ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′

(c0,0,1
ψψψψ(R, R′, R′′) + c0,0,−1

ψψψψ (R, R′, R′′)

+ c0,1,0
ψψψψ(R, R′, R′′) + c0,−1,0

ψψψψ (R, R′, R′′) (B18)

+ c−1,0,0
ψψψψ (R, R′, R′′) + c1,0,0

ψψψψ(R, R′, R′′)

+ 2c1,−1,0
ψψψψ (R, R′, R′′) + 2c0,−1,1

ψψψψ (R, R′, R′′)

+ 2c−1,0,1
ψψψψ (R, R′, R′′)),

A19 = 4π7β−1ρ̄4
ψ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′

(c1,1,1
ψψψψ(R, R′, R′′) + c−1,1,1

ψψψψ (R, R′, R′′)), (B19)

A20 =
128
3

π6β−1ρ̄3
ψρ̄φ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′c0,0

ψψψφ(R, R′, R′′),

(B20)

A21 =
32
3
π6β−1ρ̄3

ψρ̄φ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′

(c0,1
ψψψφ(R, R′, R′′) + c0,−1

ψψψφ(R, R′, R′′) (B21)

+ c1,0
ψψψφ(R, R′, R′′) + c−1,0

ψψψφ(R, R′, R′′)

+ 2c1,−1
ψψψφ(R, R′, R′′)),

A22 = 32π5β−1ρ̄2
ψρ̄

2
φ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′c0

ψψφφ(R, R′, R′′), (B22)
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A23 = 8π5β−1ρ̄2
ψρ̄

2
φ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′

(c1
ψψφφ(R, R′, R′′) + c−1

ψψφφ(R, R′, R′′)), (B23)

A24 =
32
3
π4β−1ρ̄ψρ̄

3
φ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′cψφφφ(R, R′, R′′), (B24)

A25 =
4
3
π3β−1ρ̄4

φ

∫ ∞

0
dR

∫ ∞

0
dR′

∫ ∞

0
dR′′ RR′R′′cφφφφ(R, R′, R′′). (B25)

To simplify equations (B12), (B18), (B19) and (B21), we have used the fact that replacing m′
i

by −m′
i in equation (29) leads to a complex conjugation.

Appendix C. Expansion coefficients in equation (38)

The expansion coefficients in equation (38) are given by

Ã3 = −A3, (C1)

Ã4 =
B1 − 2A4

2
− 2

3
(A14Δφ+ A12Δψ)

− 1
2

(A23(Δφ)2 + B1Δψ + A21ΔφΔψ (C2)

+ (A18 − B1)(Δψ)2),

Ã7 = −A7, (C3)

Ã10 = −A10, (C4)

Ã12 = A12 +
3
2

A18Δψ +
3
4

A21Δφ+
3
4

B1, (C5)

Ã13 = A13 +
9
4

A20Δψ +
3
2

A22Δφ, (C6)

Ã14 = A14 +
3
4

A21Δψ +
3
2

A23Δφ, (C7)

Ã15 = A15 +
9
4

A24Δφ+
3
2

A22Δψ, (C8)

Ã17 =
B1

3
− A17, (C9)

Ã18 = A18 − B1, (C10)

Ã19 =
B1 − 8A19

8
, (C11)

Ã20 = A20, (C12)

Ã21 = A21, (C13)
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Ã22 = A22, (C14)

Ã23 = A23, (C15)

Ã24 = A24, (C16)

Ã25 =
B2

3
− A25, (C17)

ε̃ψ = B1 − A1 + A3q̃4
ψ − (B1 + 2A11)Δψ

+ (B1 − 3A17)(Δψ)2 − 2
3

A13Δφ (C18)

− 3
2

A20ΔψΔφ− 1
2

A22(Δφ)2,

ε̃φ = B2 − A8 + A10q̃4
φ − (B2 + 2A16)Δφ

+ (B2 − 3A25)(Δφ)2 − 2
3

A15Δψ (C19)

− 3
2

A24ΔψΔφ− 1
2

A22(Δψ)2,

ε̃coup = −1
2

A5 −
2
3

(A13Δψ + A15Δφ)

− 3
4

(A20(Δψ)2 + A24(Δφ2)) (C20)

− A22ΔψΔφ+ A7q̃4
coup,

q̃ψ =

√
A2

2A3
, (C21)

q̃φ =

√
A9

2A10
, (C22)

q̃coup =

√
A6

2A7
. (C23)

Note that the numbering of the Ãi does not contain all numbers between 1 and 25. For example,
there is no coefficient Ã1 or Ã2. The reason for this is that we wish the numbering of the Ãi to
be consistent with the numbering of the Ai in appendix B. For example, the coefficient defined
in terms of A3 is called Ã3 and not Ã1 (cf equation (C1)).

Moreover, we remark that our derivation makes no assumptions regarding the signs of the
coefficients even though equations (C21)–(C23) seem to suggest otherwise. If, e.g., A2 and A3

have different signs, then q̃ψ becomes imaginary. However, the free energy (38) only contains
q̃2
ψ , and an imaginary value of q̃ψ would simply mean that q̃2

ψ becomes negative. In practice,
one will consider parameter values for which this does not happen in order to observe non-
trivial pattern formation effects [95]. Also, these parameters are frequently obtained by fitting
a low-order polynomial to the first peak of the direct correlation function, a procedure that also
leads to parameters with the ‘right’ signs [74].
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Appendix D. Nondimensional coefficients

The coefficients of model 3a (equations (49)–(52)) are given by

εψ = βr2
0ψ

2
0 ε̃ψ , (D1)

εφ = βr2
0φ

2
0ε̃φ, (D2)

εcoup = βr2
0ψ0φ0 ε̃coup, (D3)

qψ = r0q̃ψ, (D4)

qφ = r0q̃φ, (D5)

qcoup = r0q̃coup, (D6)

v0 =
vt0√
2r0

, (D7)

C1 = βr2
0P2

0Ã4, (D8)

C2 = βr2
0P4

0Ã19, (D9)

C3 = −1
3
βr2

0ψ0P2
0Ã12, (D10)

C4 = −1
4
βr2

0ψ
2
0P2

0Ã18, (D11)

C5 = −1
3
βr2

0φ0P2
0Ã14, (D12)

C6 = −1
4
βr2

0ψ
2
0P2

0A23, (D13)

C7 = −1
4
βr2

0ψ0P2
0φ0A21, (D14)

Gφ =
Ã10

Ã3

√
Ã17

Ã25
, (D15)

Gcoup =
Ã7

Ã3

4

√
Ã17

Ã25
, (D16)

Dr =
r2

0DR

D0
, (D17)

Mφ =
2πρ̄ψD
ρ̄φD0

√
Ã25

Ã17
, (D18)

a2 = −1
3
βr2

0ψ
2
0φ0Ã13, (D19)

a3 = −1
3
βr2

0ψ0φ
2
0Ã15, (D20)

a4 = −1
4
βr2

0ψ
3
0φ0A20, (D21)
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a5 = −1
4
βr2

0ψ
2
0φ

2
0A22, (D22)

a6 = −1
4
βr2

0ψ0φ
3
0A24. (D23)
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[30] Speck T, Bialké J, Menzel A M and Löwen H 2014 Effective Cahn–Hilliard equation for the phase

separation of active Brownian particles Phys. Rev. Lett. 112 218304
[31] Solon A P, Stenhammar J, Cates M E, Kafri Y and Tailleur J 2018 Generalized thermodynamics of

motility-induced phase separation: phase equilibria, Laplace pressure, and change of ensembles
New J. Phys. 20 075001

[32] Wittkowski R, Tiribocchi A, Stenhammar J, Allen R J, Marenduzzo D and Cates M E 2014 Scalar
ϕ4 field theory for active-particle phase separation Nat. Commun. 5 4351

[33] Bickmann J and Wittkowski R 2020 Predictive local field theory for interacting active Brownian
spheres in two spatial dimensions J. Phys.: Condens. Matter 32 214001

[34] te Vrugt M, Frohoff-Hülsmann T, Heifetz E, Thiele U and Wittkowski R 2022 From a microscopic
inertial active matter model to the Schrödinger equation (arXiv:2204.03018)

[35] Tjhung E, Nardini C and Cates M E 2018 Cluster phases and bubbly phase separation in active
fluids: reversal of the Ostwald process Phys. Rev. X 8 031080

[36] Tiribocchi A, Wittkowski R, Marenduzzo D and Cates M E 2015 Active model H: scalar active
matter in a momentum-conserving fluid Phys. Rev. Lett. 115 188302

[37] Cates M E and Tjhung E 2018 Theories of binary fluid mixtures: from phase-separation kinetics
to active emulsions J. Fluid Mech. 836 P1

[38] Bickmann J and Wittkowski R 2020 Collective dynamics of active Brownian particles in three
spatial dimensions: a predictive field theory Phys. Rev. Res. 2 033241

[39] Bickmann J, Bröker S, Jeggle J and Wittkowski R 2022 Analytical approach to chiral active sys-
tems: suppressed phase separation of interacting Brownian circle swimmers J. Chem. Phys. 156
194904

[40] Bickmann J, Bröker S and Wittkowski R 2022 Active Brownian particles in external force
fields: field-theoretical models, generalized barometric law, and programmable density patterns
(arXiv:2202.04423)

[41] Trinschek S, Stegemerten F, John K and Thiele U 2020 Thin-film modelling of resting and moving
active droplets Phys. Rev. E 101 062802 corresponding data can be found on Zenodo at https://
doi.org/10.5281/zenodo.3813574

[42] Loisy A, Eggers J and Liverpool T B 2020 How many ways a cell can move: the modes of self-
propulsion of an active drop Soft Matter 16 3106

[43] Hohenberg P C and Halperin B I 1977 Theory of dynamic critical phenomena Rev. Mod. Phys. 49
435

[44] Evans R 1979 The nature of the liquid–vapour interface and other topics in the statistical mechanics
of non-uniform, classical fluids Adv. Phys. 28 143

[45] Munakata T 1989 A dynamical extension of the density functional theory J. Phys. Soc. Japan 58
2434

[46] Kawasaki K 1994 Stochastic model of slow dynamics in supercooled liquids and dense colloidal
suspensions Physica A 208 35

42

https://doi.org/10.1039/c5sm00827a
https://doi.org/10.1039/c5sm00827a
https://doi.org/10.1039/c6sm00700g
https://doi.org/10.1039/c6sm00700g
https://doi.org/10.1039/c6sm00031b
https://doi.org/10.1039/c6sm00031b
https://doi.org/10.1038/ncomms12518
https://doi.org/10.1038/ncomms12518
https://doi.org/10.1126/science.1141272
https://doi.org/10.1126/science.1141272
https://doi.org/10.1038/s41467-022-32520-9
https://doi.org/10.1038/s41467-022-32520-9
https://doi.org/10.1103/physrevlett.110.055702
https://doi.org/10.1103/physrevlett.110.055702
https://doi.org/10.1103/physreve.98.022608
https://doi.org/10.1103/physreve.98.022608
https://doi.org/10.1103/physreve.103.032601
https://doi.org/10.1103/physreve.103.032601
https://doi.org/10.1063/5.0019426
https://doi.org/10.1063/5.0019426
https://doi.org/10.1103/physrevlett.112.218304
https://doi.org/10.1103/physrevlett.112.218304
https://doi.org/10.1088/1367-2630/aaccdd
https://doi.org/10.1088/1367-2630/aaccdd
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1088/1361-648x/ab5e0e
https://doi.org/10.1088/1361-648x/ab5e0e
https://arxiv.org/abs/2204.03018
https://doi.org/10.1103/physrevx.8.031080
https://doi.org/10.1103/physrevx.8.031080
https://doi.org/10.1103/physrevlett.115.188302
https://doi.org/10.1103/physrevlett.115.188302
https://doi.org/10.1017/jfm.2017.832
https://doi.org/10.1017/jfm.2017.832
https://doi.org/10.1103/physrevresearch.2.033241
https://doi.org/10.1103/physrevresearch.2.033241
https://doi.org/10.1063/5.0085122
https://doi.org/10.1063/5.0085122
https://arxiv.org/abs/2202.04423
https://doi.org/10.1103/physreve.101.062802
https://doi.org/10.1103/physreve.101.062802
https://doi.org/10.5281/zenodo.3813574
https://doi.org/10.5281/zenodo.3813574
https://doi.org/10.1039/d0sm00070a
https://doi.org/10.1039/d0sm00070a
https://doi.org/10.1103/revmodphys.49.435
https://doi.org/10.1103/revmodphys.49.435
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1143/jpsj.58.2434
https://doi.org/10.1143/jpsj.58.2434
https://doi.org/10.1016/0378-4371(94)90533-9
https://doi.org/10.1016/0378-4371(94)90533-9


Modelling Simul. Mater. Sci. Eng. 30 (2022) 084001 M te Vrugt et al

[47] Marconi U M B and Tarazona P 1999 Dynamic density functional theory of fluids J. Chem. Phys.
110 8032

[48] Marini Bettolo Marconi U and Tarazona P 2000 Dynamic density functional theory of fluids J.
Phys.: Condens. Matter 12 413

[49] Archer A J and Evans R 2004 Dynamical density functional theory and its application to spinodal
decomposition J. Chem. Phys. 121 4246

[50] Fraaije J G E M 1993 Dynamic density functional theory for microphase separation kinetics of
block copolymer melts J. Chem. Phys. 99 9202

[51] te Vrugt M, Löwen H and Wittkowski R 2020 Classical dynamical density functional theory: from
fundamentals to applications Adv. Phys. 69 121

[52] te Vrugt M and Wittkowski R 2022 Perspective: new directions in dynamical density functional
theory J. Phys.: Condens. Matter (in press), https://doi.org/10.1088/1361-648X/ac8633

[53] Wensink H H and Löwen H 2008 Aggregation of self-propelled colloidal rods near confining walls
Phys. Rev. E 78 031409

[54] Wittkowski R and Löwen H 2011 Dynamical density functional theory for colloidal particles with
arbitrary shape Mol. Phys. 109 2935

[55] Pototsky A and Stark H 2012 Active Brownian particles in two-dimensional traps Europhys. Lett.
98 50004

[56] Sharma A and Brader J M 2017 Brownian systems with spatially inhomogeneous activity Phys.
Rev. E 96 032604

[57] Moncho-Jordá A and Dzubiella J 2020 Controlling the microstructure and phase behavior of
confined soft colloids by active interaction switching Phys. Rev. Lett. 125 078001

[58] Wittmann R, Marconi U M B, Maggi C and Brader J M 2017 Effective equilibrium states in the
colored-noise model for active matter II. A unified framework for phase equilibria, structure
and mechanical properties J. Stat. Mech. 113208

[59] Enculescu M and Stark H 2011 Active colloidal suspensions exhibit polar order under gravity Phys.
Rev. Lett. 107 058301

[60] Wittmann R and Brader J M 2016 Active Brownian particles at interfaces: an effective equilibrium
approach Europhys. Lett. 114 68004

[61] Menzel A M, Saha A, Hoell C and Löwen H 2016 Dynamical density functional theory for
microswimmers J. Chem. Phys. 144 024115

[62] Hoell C, Löwen H and Menzel A M 2017 Dynamical density functional theory for circle swimmers
New J. Phys. 19 125004

[63] Hoell C, Löwen H and Menzel A M 2018 Particle-scale statistical theory for hydrodynamically
induced polar ordering in microswimmer suspensions J. Chem. Phys. 149 144902

[64] Arold D and Schmiedeberg M 2020 Mean field approach of dynamical pattern formation in under-
damped active matter with short-ranged alignment and distant anti-alignment interactions J.
Phys.: Condens. Matter 32 315403

[65] Bley M, Dzubiella J and Moncho-Jordá A 2021 Active binary switching of soft colloids: stability
and structural properties Soft Matter 17 7682

[66] Bley M, Hurtado P I, Dzubiella J and Moncho-Jordá A 2022 Active interaction switching controls
the dynamic heterogeneity of soft colloidal dispersions Soft Matter 18 397

[67] Chauviere A, Hatzikirou H, Kevrekidis I G, Lowengrub J S and Cristini V 2012 Dynamic density
functional theory of solid tumor growth: preliminary models AIP Adv. 2 011210

[68] Al-Saedi H M, Archer A J and Ward J 2018 Dynamical density-functional-theory-based modeling
of tissue dynamics: application to tumor growth Phys. Rev. E 98 022407

[69] te Vrugt M, Bickmann J and Wittkowski R 2020 Effects of social distancing and isolation on
epidemic spreading modeled via dynamical density functional theory Nat. Commun. 11 5576

[70] te Vrugt M, Bickmann J and Wittkowski R 2021 Containing a pandemic: nonpharmaceutical
interventions and the second wave J. Phys. Commun. 5 055008

[71] Elder K R, Katakowski M, Haataja M and Grant M 2002 Modeling elasticity in crystal growth
Phys. Rev. Lett. 88 245701

[72] Elder K R and Grant M 2004 Modeling elastic and plastic deformations in nonequilibrium pro-
cessing using phase field crystals Phys. Rev. E 70 051605

[73] Berry J, Grant M and Elder K R 2006 Diffusive atomistic dynamics of edge dislocations in two
dimensions Phys. Rev. E 73 031609

[74] Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phase-field crystal modeling and
classical density functional theory of freezing Phys. Rev. B 75 064107

43

https://doi.org/10.1063/1.478705
https://doi.org/10.1063/1.478705
https://doi.org/10.1088/0953-8984/12/8a/356
https://doi.org/10.1088/0953-8984/12/8a/356
https://doi.org/10.1063/1.1778374
https://doi.org/10.1063/1.1778374
https://doi.org/10.1063/1.465536
https://doi.org/10.1063/1.465536
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1088/1361-648X/ac8633
https://doi.org/10.1103/physreve.78.031409
https://doi.org/10.1103/physreve.78.031409
https://doi.org/10.1080/00268976.2011.609145
https://doi.org/10.1080/00268976.2011.609145
https://doi.org/10.1209/0295-5075/98/50004
https://doi.org/10.1209/0295-5075/98/50004
https://doi.org/10.1103/physreve.96.032604
https://doi.org/10.1103/physreve.96.032604
https://doi.org/10.1103/physrevlett.125.078001
https://doi.org/10.1103/physrevlett.125.078001
https://doi.org/10.1088/1742-5468/aa8c37
https://doi.org/10.1103/physrevlett.107.058301
https://doi.org/10.1103/physrevlett.107.058301
https://doi.org/10.1209/0295-5075/114/68004
https://doi.org/10.1209/0295-5075/114/68004
https://doi.org/10.1063/1.4939630
https://doi.org/10.1063/1.4939630
https://doi.org/10.1088/1367-2630/aa942e
https://doi.org/10.1088/1367-2630/aa942e
https://doi.org/10.1063/1.5048304
https://doi.org/10.1063/1.5048304
https://doi.org/10.1088/1361-648x/ab849b
https://doi.org/10.1088/1361-648x/ab849b
https://doi.org/10.1039/d1sm00670c
https://doi.org/10.1039/d1sm00670c
https://doi.org/10.1039/d1sm01507a
https://doi.org/10.1039/d1sm01507a
https://doi.org/10.1063/1.3699065
https://doi.org/10.1063/1.3699065
https://doi.org/10.1103/physreve.98.022407
https://doi.org/10.1103/physreve.98.022407
https://doi.org/10.1038/s41467-020-19024-0
https://doi.org/10.1038/s41467-020-19024-0
https://doi.org/10.1088/2399-6528/abf79f
https://doi.org/10.1088/2399-6528/abf79f
https://doi.org/10.1103/physrevlett.88.245701
https://doi.org/10.1103/physrevlett.88.245701
https://doi.org/10.1103/physreve.70.051605
https://doi.org/10.1103/physreve.70.051605
https://doi.org/10.1103/physreve.73.031609
https://doi.org/10.1103/physreve.73.031609
https://doi.org/10.1103/physrevb.75.064107
https://doi.org/10.1103/physrevb.75.064107


Modelling Simul. Mater. Sci. Eng. 30 (2022) 084001 M te Vrugt et al

[75] van Teeffelen S, Backofen R, Voigt A and Löwen H 2009 Derivation of the phase-field-crystal
model for colloidal solidification Phys. Rev. E 79 051404

[76] Huang Z-F, Elder K R and Provatas N 2010 Phase-field-crystal dynamics for binary systems:
derivation from dynamical density functional theory, amplitude equation formalism, and appli-
cations to alloy heterostructures Phys. Rev. E 82 021605

[77] Taha D, Dlamini S R, Mkhonta S, Elder K R and Huang Z-F 2019 Phase ordering, transformation,
and grain growth of two-dimensional binary colloidal crystals: a phase field crystal modeling
Phys. Rev. Mater. 3 095603

[78] Holl M P, Archer A J and Thiele U 2020 Efficient calculation of phase coexistence and phase
diagrams: application to a binary phase-field-crystal model J. Phys.: Condens. Matter 33 115401

[79] Robbins M J, Archer A J, Thiele U and Knobloch E 2012 Modeling the structure of liquids and
crystals using one- and two-component modified phase-field crystal models Phys. Rev. E 85
061408

[80] Ankudinov V and Galenko P K 2022 Structure diagram and dynamics of formation of hexagonal
boron nitride in phase-field crystal model Phil. Trans. R. Soc. A 380 20200318

[81] Löwen H 2010 A phase-field-crystal model for liquid crystals J. Phys.: Condens. Matter 22 364105
[82] Wittkowski R, Löwen H and Brand H R 2010 Derivation of a three-dimensional phase-field-crystal

model for liquid crystals from density functional theory Phys. Rev. E 82 031708
[83] Wittkowski R, Löwen H and Brand H R 2011 Polar liquid crystals in two spatial dimensions: the

bridge from microscopic to macroscopic modeling Phys. Rev. E 83 061706
[84] Wittkowski R, Löwen H and Brand H R 2011 Microscopic and macroscopic theories for the

dynamics of polar liquid crystals Phys. Rev. E 84 041708
[85] Menzel A M, Ohta T and Löwen H 2014 Active crystals and their stability Phys. Rev. E 89 022301
[86] Praetorius S, Voigt A, Wittkowski R and Löwen H 2018 Active crystals on a sphere Phys. Rev. E

97 052615
[87] Huang Z-F, Menzel A M and Löwen H 2020 Dynamical crystallites of active chiral particles Phys.

Rev. Lett. 125 218002
[88] Arold D and Schmiedeberg M 2020 Active phase field crystal systems with inertial delay and

underdamped dynamics Eur. Phys. J. E 43 47
[89] te Vrugt M, Jeggle J and Wittkowski R 2021 Jerky active matter: a phase field crystal model with

translational and orientational memory New J. Phys. 23 063023
[90] Holl M P, Archer A J, Gurevich S V, Knobloch E, Ophaus L and Thiele U 2021 Localized states

in passive and active phase-field-crystal models IMA J. Appl. Math. 86 896
[91] Alaimo F, Praetorius S and Voigt A 2016 A microscopic field theoretical approach for active

systems New J. Phys. 18 083008
[92] Chervanyov A I, Gomez H and Thiele U 2016 Effect of the orientational relaxation on the collective

motion of patterns formed by self-propelled particles Europhys. Lett. 115 68001
[93] Huang Z-F, Löwen H and Voigt A 2022 Defect dynamics in active smectics steered by extreme

confinement (arXiv:2204.00566)
[94] Frohoff-Hülsmann T, Holl M P, Knobloch E, Gurevich S V and Thiele U 2022 Stationary broken

parity states in nonvariational models (arXiv:2205.14364)
[95] Emmerich H, Löwen H, Wittkowski R, Gruhn T, Tóth G I, Tegze G and Gránásy L 2012 Phase-
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