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Ensembles of interacting drops that slide down an inclined plate show a dramatically different
coarsening behavior as compared to drops on a horizontal plate: As drops of different size slide at different
velocities, frequent collisions result in fast coalescence. However, above a certain size individual sliding
drops are unstable and break up into smaller drops. Therefore, the long-time dynamics of a large drop
ensemble is governed by a balance of merging and splitting. We employ a long-wave film height evolution
equation and determine the dynamics of the drop size distribution towards a stationary state from direct
numerical simulations on large domains. The main features of the distribution are then related to the
bifurcation diagram of individual drops obtained by numerical path continuation. The gained knowledge
allows us to develop a Smoluchowski-type statistical model for the ensemble dynamics that well compares

to full direct simulations.
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Introduction.—The coarsening of small-scale structures
as, for instance, clusters, crystals, drops, or quantum dots,
into larger ones is a fundamental and widely investigated
physical process common in nature and technology [1,2].
Amongst the first investigations of coarsening dynamics is
Ostwald’s work on the growth of larger crystals or particles
in solution at the expense of smaller ones [3]. Often, these
processes of Ostwald ripening can be described by scaling
laws for the time evolution of typical length scales. The
power law scaling for cluster growth was explained by
Lifshitz and Slyozov [4] and, independently, by Wagner
[5]. Their derivation accounts for a key feature of such
systems, namely, the coupling of the dynamics of the
individual objects and of the entire ensemble.

A particular soft matter example is an ensemble of liquid
drops on a solid substrate which naturally exhibits coars-
ening. The statistical description of condensing and coars-
ening drops on horizontal substrates, i.e., their evolution
towards equilibrium, was addressed by Meakin and co-
workers in terms of particle-based statistical models [6]
and, also, by Smoluchowski-type integrodifferential equa-
tions for volume distribution functions [7]. They also
consider the case of inclined substrates, where the drops
are initially pinned and then depin at a critical volume in an
avalanche process. The coarsening and migration of liquid
drops on horizontal substrates was also addressed in detail for
the one- (1D) [8—11] and two-dimensional (2D) cases [12,13]
employing a lubrication or long-wave model [14,15]. The
relation to Ostwald ripening is also discussed in [16].

Here, we analyze the coarsening dynamics of liquid drops
that, due to gravitation, slide down a plate of fixed
inclination. The lateral motion of the drops with respect
to each other depends strongly on differences in drop size
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resulting in a fast relative transport that facilitates coarsen-
ing, i.e., the coalescence of smaller drops into larger ones.
At the same time, large drops above a certain critical size are
unstable with respect to breakup into smaller ones, due to
the so-called pearling instability. Similarly, drops of fixed
size are unstable above a critical substrate inclination
[17,18]. We investigate the interplay of the accelerated
coarsening and the pearling instability and elucidate the
resulting statistical properties of large ensembles of sliding
drops. To this end, we employ a long-wave film height
evolution equation and conduct large-scale direct numerical
simulations (DNS) of sliding drop ensembles to extract the
dynamics of statistical measures like the drop size distri-
bution. Next, the resulting stationary distribution of the
ensemble is related to the bifurcation diagram and stability
properties of individual drops obtained by numerical path
continuation techniques [19]. Finally, we merge the numeri-
cally obtained single-drop information including several
scaling laws and develop an augmented Smoluchowski
coagulation equation as a simple statistical model that
describes the dynamics of the drop size distribution.
Modelling and numerical implementation.—A nondi-
mensional long-wave equation is used to model the time
evolution of the height profile (x, y, 7) that describes drops
of a simple liquid on a partially wetting substrate, cf. [18]
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The model accounts for the surface tension of the liquid
via a Laplace pressure, substrate-liquid interactions
such as wettability via a Derjaguin (or disjoining) pressure
[I(h) = —1/h* + 1/h®, and for the lateral driving where G
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Snapshots at different times ¢ from DNS of the model (1) for (top) horizontal @ = 0 and (bottom) inclined a = 1 substrates.

The drops slide from left to right and only one quarter of the computational domain is shown. The Supplemental Material [25] contains

the corresponding videos.

and a are a nondimensional gravity parameter and the
inclination angle of the substrate, respectively [20]. The
employed Derjaguin pressure [21] results in the presence of
a thin adsorption layer in the whole domain on which the
drops slide. DNS of this model are conducted on a large
spatial domain Q = [0,4000] x [0,4000] with periodic
boundary conditions using a finite-element method on a
quadratic mesh with bilinear ansatz functions and a second-
order implicit Runge-Kutta scheme for time stepping,
implemented using the DUNE PDELAB framework
[22-24] with a homogeneous linearly unstable liquid layer
of height hy = 2.0 with small-amplitude noise as initial
conditions (for more numerical details see [18]).

Properties of the drop ensembles.—Figure 1 presents
simulation snapshots at different times ¢ that contrast
coarsening on a horizontal (@ = 0, top row) and an inclined
(a = 1.0, bottom row) substrate. Up to =~ 0.5 x 10*, the
coarsening proceeds very similarly in both cases; however, at
a nonzero inclination, the later stages are dominated by a
faster coarsening process thatresults in larger drop sizes. This
continues until a certain time (¢, ~ 6.5 x 10* at a = 1.0),
after which the typical drop size hardly increases further,
because the pearling instability breaks up all drops above a
certain volume. Only at very late stages of the simulation can
a tendency to form large elongated drops be noted.

To quantify the coarsening process, we use the total
number of drops N (¢) in the domain [26], as well as the
drop size distribution f(V, t) obtained by a Gaussian kernel
density estimation (KDE) (see [27,28]). In this description,
Niy.viav) = f(V)dV is the number of drops with a volume
in the interval [V,V + dV]. Figure 2 shows the time

evolution of the normalized drop size distribution f(V, 1) =
f(V,t)/Np(t) in the inclined case of Fig. 1 (a = 1.0),

while the change in the total number of drops Np(7) is
presented for various inclinations in Fig. 5 (bottom panel,
solid lines). We find, that the inclination-induced accel-
eration of coarsening results in a fast drop number decrease.
In particular, this coarsening is always faster than the
rigorous scaling law N, (t) ~ t~3/% which presents an upper
bound for any case with zero inclination [13], and further
accelerates with increasing inclination. In the drop size
distribution (cf. Fig. 2), the fast coarsening is visible as a
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FIG. 2. Time evolution of the normalized drop size distribution

f(V,1) obtained at each time step by KDE for the DNS in the
lower row of Fig. 1. In the early stage, the sharp peak at small
drop volumes slowly broadens and shifts to the right. At later
times, a second maximum at larger volumes appears, grows,
broadens, and becomes dominant before it finally reaches an
almost steady shape.
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strong broadening and shifting of the initially tightly
peaked distribution towards larger volumes. Around
t~1x 10°, it then develops a second local maximum at
V ~ 6 x 10*, which grows in time at the cost of drops with
smaller volumes. Finally, after an inclination-dependent
time ., the coarsening almost stops, as indicated by a
significant kink in the N (¢) curve (Fig. 5, bottom) and a
subsequent very slow decrease. In the DNS (see Fig. 1), this
phase occurs for ¢ > ¢, ~ 6.5 x 10* and is characterized by
drop ensembles consisting of similar-sized drops, in accor-
dance with the quite uniform and almost stationary drop
size distribution (Fig. 2). Therefore, the drops slide with
small relative velocities, leading to only a few coalescence
events. These mergings often result in large drops that are
unstable with respect to pearling and breakup again. In this
way, statistically, an almost stationary state is reached and
kept in which merging and breakup of drops balance.
Stability properties of single drops.—The time evolution
of the drop size distribution results from the interplay of
drop interactions (dominated by their relative velocity) and
stability properties of individual drops. Information for
both is presented in Fig. 3 in the form of a bifurcation
diagram obtained by pseudoarclength continuation within
the PDE2PATH framework [29]. It shows the dependence of
sliding velocity on drop volume V for a single drop at fixed
inclination (cf. Ref. [18] for other cases and implementa-
tion details). Figure 3 reveals the existence of a variety of
different drop shapes, velocities, and stability properties.
For small drop volumes V, only simple, almost ellipsoidal
cap-shaped drops exist [sub-branch (a)]. Increasing V, this
sub-branch terminates at a critical volume V, &~ 7.2 x 10*
in a saddle-node bifurcation, which also connects it to sub-
branch (b), whose drops exhibit an elongated tail and are
linearly unstable. Sub-branch (b) connects to the stable sub-
branches (c) and (d) via another saddle-node bifurcation
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FIG. 3. (left) Bifurcation diagram of sliding drops [modeled by

Eq. (1)] on a substrate with inclination @ = 1.0. Shown is the
sliding velocity U in dependence on the drop volume V. There
exist several sub-branches of stationary drops with different
shape and behavior, see labels (a) to (d) and the corresponding
solutions on the right.

and a subsequent Hopf bifurcation (cf. [18]). Although at
small volumes, only the drops of sub-branch (a) exist, from
V ~5.3 x 10° onwards, we find a multistability of sub-
branch (a) and the elongated drops of sub-branch (c). In the
DNS, one mainly observes drops from sub-branch (a)
because most drops with V >V that are formed by
merging are unstable and decay by pearling. However,
very seldom is a merged drop elongated and linearly stable,
i.e., on sub-branches (c) and (d).

Next, we connect the information gained from the
bifurcation study of the individual drop to the ensemble
dynamics. As at relatively low inclinations stable elongated
drops are rarely formed, we focus on sub-branch (a): The
bifurcation point at V. provides the stability limit for
simple drops and, therefore, sets an upper limiting volume
for the ensemble DNS. Figure 4 shows bifurcation curves
together with the late-stage quasistationary drop size
distributions obtained from DNS. Comparison shows, that
the location of the main peak of the distribution is directly
connected to the position of the saddle-node bifurcation at
V< The number of drops with V > V decreases signifi-
cantly. Indeed, V., almost coincides with the rhs inflection
point of the size distribution. These observations equally
hold for different inclinations « (see Fig. 4).

Further, we extract power laws that relate (i) drop
velocity to drop volume and inclination angle from sin-
gle-drop bifurcation diagrams as the one in Fig. 3 (for
details see [18])

U(V) = agaVh, (2)

and (ii) critical volume V. to inclination angle

Vo= alaﬂ]’ (3)
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FIG. 4. Comparison of late-stage quasistationary normalized
drop size distributions f(V) at t=5x10° and bifurcation
diagrams U(V) for single drops at different fixed inclinations
a. The vertical dotted lines indicate the position V. of the
respective saddle-node bifurcation.

204501-3



PRL 119, 204501 (2017)

PHYSICAL REVIEW

week ending

LETTERS 17 NOVEMBER 2017

with  ay =22 x 1074,
and p; = —1.40.

Statistical model.—In the final step, the obtained “single-
drop” information is employed to develop a minimal
statistical model for the ensemble dynamics as character-
ized by the unnormalized drop size distribution f(V, ). To
capture the coarsening dynamics that is dominated by the
interplay of collision-caused merging and instability-
caused splitting of drops, we extend Smoluchowski’s
continuous rate equation for coagulation [7], following
the approach of Meakin et al. for breath figures (see [6] and
references therein). Thereby, loss and gain of drops of each
volume are accounted for through continuous transition
rate kernels for coalescence and fragmentation. The model
conserves the total volume and reads

Bo = 0.569, a;, =7.18 x 10,

O f (V1) =— /0 " KV.DVF(V)F(7)dT

loss due to coalescence

+AV%K(V,V—X~/)]‘(\7)]‘(V— 7)dv

gain due to coalescence

- /0 SIV.D)F(V)AV + A J(V.V)F(V)av,

loss due to fragmentation

gain due to fragmentation

4)

where K(V,. V) = 2L [U(V,) = UV,). (5)
J(Vav Vb) = jG(Va, Vcr)®(Va - Vh)' (6)

The properties of the kernels K and J in this nonlocal
evolution equation are crucial features of the coarse-grained
model. We deduce them from the single-drop results (2) and
(3) above and employ a minimum of free parameters and
assumptions. In particular, the kernel K(V,,, V;,) [cf. Eq. (5)]
accounts for the coalescence of two drops with volumes V/,
and V. It sets the frequency of collisions as the ratio of the
relative drop velocity and the mean distance L/2 between
two drops on the domain. The drop velocities U (V) are given
by the obtained scaling law (2) with the only a priori
unknown parameter being k;. It is a measure for the
reduction of the number of collisions because all drops
slide in the same direction and, therefore, only interact with a
subset of the other drops. The other kernel J(V,,V,)
[cf. Eq. (6)] with the sigmoid function ¢(V,, V) [30]
accounts for drop splitting and corresponds to the simplest
implementation of the instability threshold obtained above.
In particular, drops with V, > V. fragment into two drops
of volume V, and V, — V,, respectively, with equal prob-
ability forall V,, < V, (expressed by the Heaviside function
®) [31]. The only free parameter j represents the time scale
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FIG. 5. (top) Space-time plots show the time evolution of the
drop size distribution f(V, ) at « = 1.0 obtained by KDE from
(left) a DNS of Eq. (1) (cf. Fig. 2) and (right) a simulation of the
statistical model (4). (bottom) Comparison of the time evolution
of the drop number N (¢) for different inclinations « as obtained
by DNS (solid lines) and statistical model (dashed lines). The
coarsening with inclination is always faster than the rigorous
upper bound N (t) ~t~3/* valid for horizontal substrates [13].
The inset shows the same data with the ¢ axis scaled by @, which
results in a master curve in the collision-dominated regime. The

remaining parameters are j = 6.25 x 107%, k; = %.

ratio between fragmentation and coalescence processes.
Note that the statistical model (4) neglects the classical
Ostwald ripening, i.e., coarsening by diffusive mass transfer
between drops as, even at extremely small inclination, the
considered coarsening by drop translation is much faster.

The developed statistical model (4) is solved numerically
[32] employing initial conditions corresponding to early
stages of the DNS of Eq. (1) (e.g., in Fig. 1). As aresult, the
top row of Fig. 5 compares the two dynamics of the drop
size distribution as measured in the DNS of the thin film
equation (1) and in the simulation of the statistical model
(4). It shows a very good agreement of all main features, as,
e.g., the appearance of a second peak and the convergence
to a quasistationary distribution.

Furthermore, the bottom panel of Fig. 5 compares the
evolution of the drop number N, for different inclination
angles a fixing, in all cases, parameters k; and j such thata
best fit results for simulations with @ = 1.0. Nevertheless,
the predictions of the statistical model for all inclinations
agree very well with the DNS results. This gives clear
evidence that the dynamics of the ensemble properties
resulting from many individual complex coalescence and
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fragmentation processes can be rather well captured by our
simple statistical model.

Conclusions.—We have investigated the coarsening
behavior of ensembles of interacting sliding drops employ-
ing a thin-film equation. We have shown, in direct numerical
simulations, that the statistical ensemble properties converge
to an almost stationary state corresponding to a balance of
coalescence and fragmentation events. The emerging dis-
tribution can be related to stability properties of individual
drops as captured in single-drop bifurcation diagrams.
Further, based on the gained single-drop information, we
have developed a minimal statistical model that faithfully
captures the main ensemble dynamics and very well
compares to the full direct numerical simulations. We
believe that the proposed methodology of employing
“microscopic" information in the form of bifurcation proper-
ties of individual entities (here, drops), to derive coarse-
grained “macroscopic” statistical models for the ensemble
dynamics, represents a multiscale approach that will prove
useful in other nonlinear nonequilibrium systems.
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