next up previous contents
Next: The Hessians , Up: Gaussian prior factor for Previous: Lagrange multipliers: Error functional   Contents

Normalization by parameterization: Error functional $E_z$

Again, normalization can also be ensured by parameterization of $P$ and solving for unnormalized probabilities $z$, i.e.,

\begin{displaymath}
P(x,y) = \frac{z(x,y)}{\int \!dy\, z(x,y)},
\quad
P = \frac{z}{Z_X}
.
\end{displaymath} (174)

The corresponding functional reads
\begin{displaymath}
E_z = - \left(N , \ln \frac{z}{Z_X}\right)
+ \frac{1}{2}\left( \frac{z}{Z_X}, {{\bf K}}\,\frac{z}{Z_X}\right).
\end{displaymath} (175)

We have
\begin{displaymath}
\frac{\delta z}{\delta z} = {\bf I},
\quad
\frac{\delta Z_X}...
...rac{\delta \ln Z_X}{\delta z}
= {\bf Z}_X^{-1} \, {\bf I}_X ,
\end{displaymath} (176)

with diagonal matrix ${\bf z}$ built analogous to ${\bf P}$ and ${\bf Z}_X$, and
\begin{displaymath}
\frac{\delta P }{\delta z}
=\frac{\delta (z/Z_X) }{\delta z...
... z}
= {\bf Z}_X^{-1} \left( {\bf P}^{-1} - {\bf I}_X \right),
\end{displaymath} (177)


\begin{displaymath}
\frac{\delta Z_X^{-1} }{\delta z}
= - {\bf Z}_X^{-2} {\bf I...
... \, {\bf Z}_X^{-1} \left( {\bf I} - {\bf P} {\bf I}_X \right).
\end{displaymath} (178)

The diagonal matrices $[{\bf Z}_X , {\bf P} ] = 0$ commute, as well as $[{\bf Z}_X , {\bf I}_X] = 0$, but $[ {\bf P} , {\bf I}_X] \ne 0$. Setting the gradient to zero and using
\begin{displaymath}
\left( {\bf I} - {\bf P} {\bf I}_X \right)^T
= \left( {\bf I} - {\bf I}_X {\bf P} \right)
,
\end{displaymath} (179)

we find

\begin{displaymath}
0
= -\left( \frac{\delta P}{\delta z} \right)^T
\frac{\delta E_z}{\delta P}
\end{displaymath}


\begin{displaymath}
={\bf Z}_X^{-1} \left[
\left( {\bf P}^{-1} - {\bf I}_X \righ...
... \left({\bf I} - {\bf I}_X {\bf P} \right) {{\bf K}} P
\right]
\end{displaymath}


\begin{displaymath}
= {\bf Z}_X^{-1}
\left( {\bf I} - {\bf I}_X {\bf P} \right)
\left( {\bf P}^{-1} N - {{\bf K}} P \right)
\end{displaymath}


\begin{displaymath}
= {\bf Z}_X^{-1}
\left( {\bf I} - {\bf I}_X {\bf P} \right)...
...ight)
= \left( {\bf G}_P - {\bf\Lambda}_X \right) {Z}_X^{-1} ,
\end{displaymath} (180)

with $P$-gradient $G_P = {\bf P}^{-1} N - {{\bf K}} P$ = $-\delta E_z/\delta P$ of $-E_z$ and ${\bf G}_P$ the corresponding diagonal matrix. Multiplied by ${\bf Z}_X$ this gives the stationarity equation (172).


next up previous contents
Next: The Hessians , Up: Gaussian prior factor for Previous: Lagrange multipliers: Error functional   Contents
Joerg_Lemm 2001-01-21