next up previous contents
Next: General Gaussian prior factors Up: Gaussian prior factor for Previous: Normalization by parameterization: Error   Contents


The Hessians ${\bf H}_P$, ${\bf H}_z$

We now calculate the Hessian of the functional $-E_P$. For fixed $\Lambda_X$ one finds the Hessian by differentiating again the gradient (166) of $-E_P$

\begin{displaymath}
{\bf H}_P(P) (x,y; x^\prime y^\prime )
=
-{{\bf K}}(x^\prim...
...rime )
\sum_i \frac{\delta (x-x_i )\delta (y-y_i)}{P^2(x,y)},
\end{displaymath} (181)

i.e.,
\begin{displaymath}
{\bf H}_P
= -{{\bf K}} - {\bf P}^{-2} {\bf N}.
\end{displaymath} (182)

Here the diagonal matrix ${\bf P}^{-2} {\bf N}$ is non-zero only at data points.

Including the dependence of $\Lambda_X$ on $P$ one obtains for the Hessian of $-E_z$ in (175) by calculating the derivative of the gradient in (180)

\begin{displaymath}
{\bf H}_z (x,y;x^\prime,y\prime) =
-\frac{1}{Z_X(x)} \Big[
{{\bf K}} (x,y;x^\prime,y\prime)
\end{displaymath}


\begin{displaymath}
- \int\! dy^{\prime\prime}
\Big(
p(x,y^{\prime\prime}){{\...
...x^\prime,y^{\prime\prime}) p(x^\prime,y^{\prime\prime})
\Big)
\end{displaymath}


\begin{displaymath}
+ \int\! dy^{\prime\prime} dy^{\prime\prime\prime}
p(x,y^{\...
...,y^{\prime\prime\prime})
p(x^\prime,y^{\prime\prime\prime})
\end{displaymath}


\begin{displaymath}
+ \delta (x-x^\prime) \delta (y-y^\prime)
\sum_i \frac{ \de...
...y_i) }{ p^2(x,y) }
- \delta (x-x^\prime) \sum_i \delta (x-x_i)
\end{displaymath}


\begin{displaymath}
-\delta (x-x^\prime)
\int\! dx^{\prime\prime} dy^{\prime\p...
...}}(x^{\prime\prime},y^{\prime\prime};x^\prime,y^\prime)
\Big)
\end{displaymath}


\begin{displaymath}
+ 2\, \delta (x-x^\prime)
\int\! dy^{\prime\prime} dx^{\pr...
...e},y^{\prime\prime\prime})
\Big] \frac{1}{ Z_X (x^\prime) },
\end{displaymath} (183)

i.e.,
$\displaystyle {\bf H}_z$ $\textstyle =$ $\displaystyle {\bf Z}_X^{-1}
\left( {\bf I}-{\bf I}_X {\bf P} \right)
\left(-{{...
...}^{-2} {\bf N} \right)
\left( {\bf I}- {\bf P} {\bf I}_X \right)
{\bf Z}_X^{-1}$  
    $\displaystyle - {\bf Z}_X^{-1} \left( {\bf I}_X
\left( {\bf G}_P - {\bf\Lambda}...
...)
+
\left( {\bf G}_P - {\bf\Lambda}_X \right)
{\bf I}_X \right) {\bf Z}_X^{-1},$ (184)
  $\textstyle =$ $\displaystyle - {\bf Z}_X^{-1} \Big[
\left( {\bf I}-{\bf I}_X {\bf P} \right)
{{\bf K}}
\left( {\bf I} - {\bf P} {\bf I}_X \right)
+{\bf P}^{-2} {\bf N}$  
    $\displaystyle - {\bf I}_X {\bf P}^{-1} {\bf N}
- {\bf N} {\bf P}^{-1} {\bf I}_X
+{\bf I}_X {\bf N} {\bf I}_X$  
    $\displaystyle + {\bf I}_X {\bf G}_P + {\bf G}_P {\bf I}_X
- 2\, {\bf I}_X {\bf\Lambda}_X
\Big] {\bf Z}_X^{-1}.$ (185)

Here we used $[{\bf\Lambda}_X,{\bf I}_X]$ = 0. It follows from the normalization $\int \! dy \, P(x,y) = 1$ that any $y$-independent function is right eigenvector of $\left( {\bf I}-{\bf I}_X {\bf P} \right)$ with zero eigenvalue. Because $\Lambda_X$ = ${\bf I}_X {\bf P} G_P$ this factor or its transpose is also contained in the second line of Eq. (184), which means that ${\bf H}_z$ has a zero mode. Indeed, functional $E_z$ is invariant under multiplication of $z$ with a $y$-independent factor. The zero modes can be projected out or removed by including additional conditions, e.g. by fixing one value of $z$ for every $x$.


next up previous contents
Next: General Gaussian prior factors Up: Gaussian prior factor for Previous: Normalization by parameterization: Error   Contents
Joerg_Lemm 2001-01-21