next up previous contents
Next: Mixture models Up: Parameterizing likelihoods: Variational methods Previous: Gaussian priors for parameters   Contents

Linear trial spaces

Solving a density estimation problem numerically, the function $\phi $ has to be discretized. This is done by expanding $\phi $ in a basis $B_l$ (not necessarily orthonormal) and, choosing some $l_{\rm max}$, truncating the sum to terms with $l\le l_{\rm max}$,

\begin{displaymath}
\phi = \sum_{l=1}^\infty c_l B_l
\rightarrow
\phi = \sum_{l=1}^{l_{\rm max}} c_l B_l
.
\end{displaymath} (380)

This, also called Ritz's method, corresponds to a finite linear trial space and is equivalent to solving a projected stationarity equation. Using a discretization (380) the functional (187) becomes
\begin{displaymath}
E_{\rm Ritz} =
-(\,\ln P(\phi),\,N\,)
+\frac{1}{2}\sum_{kl} c_k c_l (\,B_k,\,{{\bf K}}\,B_l\,)
+ (\,P(\phi),\,\Lambda_X\,).
\end{displaymath} (381)

Solving for the coefficients $c_l$, $l\le l_{\rm max}$ to minimize the error results according to Eq.[355) and
\begin{displaymath}
\Phi^\prime (l;x,y)
= B_l(x,y),
\end{displaymath} (382)

in
\begin{displaymath}
0 =
(\, B_l ,\, {\bf P}^\prime {\bf P}^{-1}\,N\,)
- \sum_k ...
...,\, {\bf P}^\prime \, \Lambda_X\,)
, \forall l\le l_{\rm max},
\end{displaymath} (383)

corresponding to the $l_{\rm max}$-dimensional equation
\begin{displaymath}
{{\bf K}}_B c =
N_B (c)
- \Lambda_B (c),
\end{displaymath} (384)

with
$\displaystyle c(l)$ $\textstyle =$ $\displaystyle c_l,$ (385)
$\displaystyle {{\bf K}}_B (l,k)$ $\textstyle =$ $\displaystyle (\,B_l,\, {{\bf K}}\,B_k\,),$ (386)
$\displaystyle N_B (c)(l)$ $\textstyle =$ $\displaystyle (\,B_l,\,{\bf P}^\prime(\phi(c))\,{\bf P}^{-1}(\phi(c))\,N\,),$ (387)
$\displaystyle \Lambda_B (c)(l)$ $\textstyle =$ $\displaystyle (\, B_l,\, {\bf P}^\prime(\phi (c)) \,\Lambda_X\,).$ (388)

Thus, for an orthonormal basis $B_l$ Eq. (384) corresponds to Eq. (189) projected into the trial space by the projector $\sum_l B_l\,B_l^T$.

The so called linear models are obtained by the (very restrictive) choice

\begin{displaymath}
\phi(z) = \sum_{l=0}^{1} c_l B_l = c_0 + \sum_l c_l z_l
\end{displaymath} (389)

with $z=(x,y)$ and $B_0$ = 1 and $B_l$ = $z_l$. Interactions, i.e., terms proportional to products of $z$-components like $c_{mn}z_mz_n$ can be included. Including all possible interaction would correspond to a multidimensional Taylor expansion of the function $\phi (z)$.

If the functions $B_l(z)$ are also parameterized this leads to mixture models for $\phi $. (See Section 4.4.)


next up previous contents
Next: Mixture models Up: Parameterizing likelihoods: Variational methods Previous: Gaussian priors for parameters   Contents
Joerg_Lemm 2001-01-21